\(x^2+3x-18=0\)

\(8x^2+30x+7=0\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2+3x-18=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}}\)

\(8x^2+30x+7=0\)

\(\Leftrightarrow\left(x+\frac{1}{4}\right)\left(x+\frac{7}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=0\\x+\frac{7}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=-\frac{7}{2}\end{cases}}}\)

\(x^3-11x^2+30x=0\)

\(\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)hoặc \(x=0\)

21 tháng 7 2016

\(x^2+3x-18=x^2-3x+6x-18=x\left(x-3\right)+6\left(x-3\right)=\left(x-2\right)\left(x+6\right)\)

22 tháng 10 2018

\(x^3-11x^2+30x=0\)

\(\left(x-6\right).\left(x-5\right).x=0\)

\(=>\orbr{\begin{cases}x-6=0\\x-5=0,x=0\end{cases}}\)

\(=>\orbr{\begin{cases}x=6\\x=5,x=0\end{cases}}\)

P/S: mk mới lớp 7 sai sót mong bỏ qua 

22 tháng 10 2018

\(8x^2+30x+7=0\)

\(8x^2+28x+2x+7=0\)

\(2x.\left(4x+1\right)+7.\left(4x+1\right)=0\)

\(\left(2x+7\right).\left(4x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=-7\\4x=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)

vậy ....

P/S sorry mk làm hơi lâu :)__chờ tí làm câu a cho

16 tháng 10 2018

b) 8x2 + 30x + 7  = 0

8x2 + 16x + 14x + 7  = 0

8x.(x+2) + 7.(x+2) = 0

(x+2).(8x+7) = 0

..

bn tự làm tiếp nhé! ^-^

c) x3 - 11x2 + 30x = 0

x.(x2 - 11x +30) = 0

\(x.\left(x^2-5x-6x+30\right)=0.\)

x.[ x.(x-5) - 6.(x-5) ] = 0

x.(x-5).(x-6) = 0

...

30 tháng 9 2018

a) \(2x^2+5x-18\)

\(=2x^2-4x+9x-18\)

\(=2x\left(x-2\right)+9\left(x-2\right)\)

\(=\left(x-2\right)\left(2x+9\right)\)

b) \(4x^2-17x+15\)

\(=4x^2-12x-5x+15\)

\(=4x\left(x-3\right)-5\left(x-3\right)\)

\(=\left(x-3\right)\left(4x-5\right)\)

c) \(-8x^2+10x+7\)

\(=-8x^2-4x+14x+7\)

\(=-4x\left(2x+1\right)+7\left(2x+1\right)\)

\(=\left(2x+1\right)\left(-4x+7\right)\)

d) \(7x^2-30x+8\)

\(=7x^2-28x-2x+8\)

\(=7x\left(x-4\right)-2\left(x-4\right)\)

\(=\left(x-4\right)\left(7x-2\right)\)

e) \(-x^3+11x^2-30x\)

\(=x\left(-x^2+11x-30\right)\)

\(=x\left(-x^2+5x+6x-30\right)\)

\(=x\left[-x\left(x-5\right)+6\left(x-5\right)\right]\)

\(=x\left(x-5\right)\left(-x+6\right)\)

30 tháng 9 2018

a) 2x\(^2\) + 5x - 18 = 2x\(^2\) + 9x - 4x - 18 = x(2x + 9) - 2(2x + 9) = (x-2)(2x-9)

b) 4x\(^2\) - 17x - 15 = 4x\(^2\) + 20x - 3x - 15 = 4x(x + 5 ) - 3(x + 5) = (4x - 3 )(x + 5)

c) -8x\(^2\) + 10x + 7 = -8x\(^2\) + 14x - 4x + 7 =-2x(4x - 7) - (4x - 7) = (-2x - 1)(4x - 7)

d) 7x\(^2\) - 30x + 8 = 7x\(^2\) + 2x + 28x + 8 = x(7x + 2) + 4(7x + 2) = (x + 4)(7x + 2)

e) - x\(^3\) + 11x\(^2\) - 30x = -x(x\(^2\) - 11x + 30) = -x(x\(^2\) - 5x - 6x + 30) = -x\(\left[x\left(x-5\right)-6\left(x-5\right)\right]\) = -x(x-6)(x-5)

13 tháng 6 2017

a)

a) 3x2+12x66=0

=> 3(x + 2)2 - 12 - 66 = 0

=> 3(x + 2)2 - 78 = 0

=> 3(x + 2)2 = 78

=> (x + 2)2 = 26

=> x = \(\sqrt{26}-2\)

b)9x230x+225=0

=> (3x - 5)2 - 25 + 225 = 0

=> (3x - 5)2 + 200 = 0

=> (3x - 5)2 = -200

9x2 - 30x + 225 không có ngiệmc)x2+3x10=0=> (x + 1,5)2 - 2,25 - 10 = 0

=> (x + 1,5)2 - 12,25 = 0

=> (x + 1,5)2 = 12, 25

=> x + 1,5 = 3,5

=> x = 2

d)3x27x+1=0=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\) + 1 = 0

=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{37}{12}\) = 0

=> 3(x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{12}\)

=> (x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{36}\)

=> x = \(\dfrac{\sqrt{37}}{6}+\dfrac{7}{6}=\dfrac{\sqrt{37}+7}{6}\)

e) 3x27x+8=0

=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\)+ 8 = 0

=> 3(x - \(\dfrac{7}{6}\))2 + \(\dfrac{47}{12}\) = 0

=> 3(x - \(\dfrac{7}{6}\))2 = \(-\dfrac{47}{12}\)

KL : Không có ngiệm

12 tháng 3 2020

\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\\\Leftrightarrow\left(x+1\right)^2=4\left(x-1\right)^2\\\Leftrightarrow \left(x+1\right)^2-4\left(x-1\right)^2=0\\\Leftrightarrow \left(x+1\right)^2-\left(2x-2\right)^2=0\\\Leftrightarrow \left[\left(x+1\right)+\left(2x-2\right)\right]\left[\left(x+1\right)-\left(2x-2\right)\right] =0\\ \Leftrightarrow\left(x+1+2x-2\right)\left(x+1-2x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(3-x\right)=0\\\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=3\end{matrix}\right. \)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{3};3\right\}\)

\(\left(2x+7\right)^2=9\left(x+2\right)^2\\ \Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+7\right)^2-\left(3x+6\right)^2=0\\ \Leftrightarrow\left[\left(2x+7\right)+\left(3x+6\right)\right]\left[\left(2x+7\right)-\left(3x+6\right)\right]=0\\ \Leftrightarrow\left(2x+7+3x+6\right)\left(2x+7-3x-6\right)=0\\ \Leftrightarrow\left(5x+13\right)\left(1-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+13=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-13}{5}\\x=1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{-13}{5};1\right\}\)

\(4\left(2x+7\right)^2=9\left(x+3\right)^2\\\Leftrightarrow 4\left(2x+7\right)^2-9\left(x+3\right)=0\\ \Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\\\Leftrightarrow \left[\left(4x+14\right)+\left(3x+9\right)\right]\left[\left(4x+14\right)-\left(3x+9\right)\right]=0\\\Leftrightarrow \left(4x+14+3x+9\right)\left(4x+14-3x-9\right)=0\\\Leftrightarrow \left(7x+23\right)\left(x+5\right)=0\\\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right. \)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{-23}{7};-5\right\}\)

15 tháng 3 2020

tiếp đi bạnhehe

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

a)

\(x^3-7x-6=x^3-x-6x-6\)

\(=x(x^2-1)-6(x+1)\)

\(=x(x-1)(x+1)-6(x+1)=(x+1)[x(x-1)-6]\)

\(=(x+1)(x^2-x-6)=(x+1)[x^2-3x+2x-6]\)

\(=(x+1)[x(x-3)+2(x-3)]=(x+1)(x+2)(x-3)\)

b) \(x^3-6x^2+8x\)

\(=x(x^2-6x+8)\)

\(=x(x^2-4x-2x+8)\)

\(=x[x(x-4)-2(x-4)]=x(x-2)(x-4)\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

c) \(x^4+2x^3-16x^2-2x+15\)

\(=(x^4+2x^3-x^2-2x)-15x^2+15\)

\(=[(x^4-x^2)+(2x^3-2x)]-15(x^2-1)\)

\(=[x^2(x^2-1)+2x(x^2-1)]-15(x^2-1)\)

\(=(x^2-1)(x^2+2x)-15(x^2-1)=(x^2-1)(x^2+2x-15)\)

\(=(x^2-1)(x^2-3x+5x-15)=(x^2-1)[x(x-3)+5(x-3)]\)

\(=(x^2-1)(x+5)(x-3)=(x-1)(x+1)(x+5)(x-3)\)

d)

\(x^3-11x^2+30x=x(x^2-11x+30)\)

\(=x(x^2-5x-6x+30)\)

\(=x[x(x-5)-6(x-5)]=x(x-6)(x-5)\)

6 tháng 10 2018

a)\(x^2-13x+36=x^2-4x-9x+36=x\left(x-4\right)-9\left(x-4\right)=\left(x-9\right)\left(x-4\right)\)

b)\(x^2+3x-18=x^2-3x+6x-18=x\left(x-3\right)+6\left(x-3\right)=\left(x+6\right)\left(x-3\right)\)

c)\(x^2-5x-24=x^2+3x-8x-24=x\left(x+3\right)-8\left(x+3\right)=\left(x-8\right)\left(x+3\right)\)

d)\(3x^2-16x+5=3x^2-x-15x+5=x\left(3x-1\right)-5\left(3x-1\right)=\left(x-5\right)\left(3x-1\right)\)

e)\(8x^2+30x+7=8x^2+28x+2x+7=4x\left(2x+7\right)+\left(2x+7\right)=\left(4x+1\right)\left(2x+7\right)\)

g)\(2x^2-7x+3=2x^2-6x-x+3=2x\left(x-3\right)-\left(x-3\right)=\left(2x-1\right)\left(x-3\right)\)

h)\(6x^2-7x+3=6x^2-9x-2x+3=3x\left(2x-3\right)-\left(2x-3\right)=\left(3x-1\right)\left(2x-3\right)\)

i)\(3x^2-14x+11=3x^2-3x-11x+11=3x\left(x-1\right)-11\left(x-1\right)=\left(3x-11\right)\left(x-1\right)\)

k)\(5x^2+8x-13=5x^2-5x+13x-13=5x\left(x-1\right)+13\left(x-1\right)=\left(5x+13\right)\left(x-1\right)\)

6 tháng 10 2018

a ) \(x^2-13x+36=x^2-4x-9x+36=x\left(x-4\right)-9\left(x-4\right)=\left(x-9\right)\left(x-4\right)\)

b ) \(x^2+3x-18=x^2-3x+6x-18=x\left(x-3\right)+6\left(x-3\right)=\left(x+6\right)\left(x-3\right)\)

c ) \(x^2-5x-24=x^2-3x+8x-24=x\left(x-3\right)+8\left(x-3\right)=\left(x+8\right)\left(x-3\right)\)

d ) \(3x^2-16x+5=3x^2-15x-x+5=3x\left(x-5\right)-\left(x-5\right)=\left(3x-1\right)\left(x-5\right)\)

e ) \(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(2x+7\right)\left(4x+1\right)\)

g ) \(2x^2-7x+3=2x^2-6x-x+3=2x\left(x-3\right)-\left(x-3\right)=\left(2x-1\right)\left(x-3\right)\)

h ) \(6x^2-7x-20=6x^2-15x+8x-20=3x\left(2x-5\right)+4\left(2x-5\right)=\left(3x+4\right)\left(2x-5\right)\)

i ) \(3x^2-14x+11=3x^2-3x-11x+11=3x\left(x-1\right)-11\left(x-1\right)=\left(3x-11\right)\left(x-1\right)\)

k ) \(5x^2+8x-13=5x^2-5x+13x-13=5x\left(x-1\right)+13\left(x-1\right)=\left(5x+13\right)\left(x-1\right)\)