K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(x^2+2x+3\right)^2-9\left(x^2+2x+3\right)+18=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)^2-3\left(x^2+2x+3\right)-6\left(x^2+2x+3\right)+18=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+3-3\right)-6\left(x^2+2x+3-3\right)=0\)

\(\Leftrightarrow\left(x^2+2x+3-6\right)\left(x^2+2x\right)=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\cdot x\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left(x^2+2x+1-4\right)\cdot x\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+1-2\right)\left(x+1+2\right)\cdot x\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\cdot x\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\\x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x=0\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;-3;0;-2\right\}\)

12 tháng 9 2018

1 ) 2x2 -  5x + 4x - 10 = 0

=> 2x2 + 4x - 5x - 10 = 0

=> 2x ( x + 2 ) - 5. ( x + 2 ) = 0

=> ( x + 2 ) . ( 2x - 5 ) = 0

=> \(\orbr{\begin{cases}x+2=0\\2x-5=0\end{cases}}\) 

=> \(\orbr{\begin{cases}x=-2\\x=\frac{5}{2}\end{cases}}\)

Vậy \(x\in\left\{-2;\frac{5}{2}\right\}\)

2 ) x2 ( 2x - 3 ) + 3 - 2x = 0

=> x2 ( 2x - 3 ) - ( 2x - 3 ) = 0

=> ( 2x - 3 ) . ( x2 - 1 ) = 0

=> \(\orbr{\begin{cases}2x-3=0\\x^2-1=0\end{cases}}\)  

=> \(\orbr{\begin{cases}2x=3\\x^2=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=\pm1\end{cases}}\)

Vậy \(x\in\left\{\frac{3}{2};\pm1\right\}\)

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)

\(\Leftrightarrow\left(4x^2+8x+3\right)\left(x^2+2x+1\right)-18=0\)

\(\Leftrightarrow\left[4\left(x^2+2x\right)+3\right]\left(x^2+2x+1\right)-18=0\)

Đặt \(t=x^2+2x\)ta có

\(\left(4t+3\right)\left(t+1\right)-18=0\)

\(\Leftrightarrow4t^2+7x-15=0\)

\(\Leftrightarrow4t^2+12t-5t-15=0\)

\(\Leftrightarrow4t\left(t+3\right)-5\left(t+3\right)=0\)

\(\Leftrightarrow\left(t+3\right)\left(4t-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+3=0\\4t-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=-3\\t=\frac{5}{4}\end{cases}}}\)

Nếu \(t=-3\Rightarrow x^2+2x=-3\)

\(\Leftrightarrow x^2+2x+3=0\)

\(\Rightarrow\)x vô nghiệm vì \(x^2+2x+3>0\)với mọi x

Nếu \(t=\frac{5}{4}\Rightarrow x^2+2x=\frac{5}{4}\)

\(\Leftrightarrow x^2+2x-\frac{5}{4}=0\)

\(\Leftrightarrow4x^2+8x-5=0\)

\(\Leftrightarrow4x^2-2x+10x-5=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}}\)

Vậy \(S=\left\{-\frac{5}{2};\frac{1}{2}\right\}\)

P/s tham khảo nha

14 tháng 10 2018

a) \(x^2-4x=0\)

\(x\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

b) \(4x^2-9=0\)

\(\left(2x\right)^2-3^2=0\)

\(\left(2x+3\right)\left(2x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+3=0\\2x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}\)

c) \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\left(2x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

d) \(x\left(2x+9\right)-4x-18=0\)

\(x\left(2x+9\right)-2\left(2x+9\right)=0\)

\(\left(2x+9\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)

e) \(\left(2x-1\right)^2-\left(x+2\right)^2=0\)

\(\left(2x-1-x-2\right)\left(2x-1+x+2\right)=0\)

\(\left(x-3\right)\left(3x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}}\)

14 tháng 10 2018

\(x^2-4x=0\)

\(x.\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\Leftrightarrow x=4\end{cases}}\)

\(4x^2-9=0\)

\(2^2x^2-9=0\)

\(\left(2x\right)^2-9=0\)

\(\left(2x\right)^2-3^2=0\)

\(\Rightarrow\orbr{\begin{cases}\left(2x\right)^2=\left(-3\right)^2\\\left(2x\right)^2=3^2\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\2x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}}\)

\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\cdot\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0+3\\2x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

\(x\left(2x+9\right)-4x-18=0\)

\(x\left(2x+9\right)-\left(4x+18\right)=0\)

\(x\left(2x+9\right)-\left(2\cdot2x+2\cdot9\right)=0\)

\(x\left(2x+9\right)-2.\left(2x+9\right)=0\)

\(\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-9\\x=0+2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)

\(\left(2x-1\right)^2-\left(x+2\right)^2=0\)

\(\Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}2x-1=x+2\\2x-1=-x+2\end{cases}\Rightarrow\orbr{\begin{cases}2x=3+x\\2x=-x+3\end{cases}\Rightarrow\orbr{\begin{cases}2x-x=3\\2x+x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}}}\)

\(\)

3 tháng 7 2021

\(1.\)

\(x^3-x^2-x+1=0\)

\(=x^2\left(x-1\right)-\left(x-1\right)=0\)

\(=\left(x-1\right)\left(x^2-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

3 tháng 7 2021

* Bài 1 bỏ bước tìm x đi hộ mình nhé, nhầm tí 

\(4.\)

\(2\left(x+5\right)-x^2-5x=0\)

\(=-x^2+2x-5x+10=0\)

\(=-x^2-3x+10=0\)

\(=x^2+3x-10=0\)

\(=\left(x+5\right)\left(x-2\right)=0\)

a: =(x-y)^2+2(x-y)

=(x-y)(x-y+2)

c: =(x-3)(x+3)+(x-3)^2

=(x-3)(x+3+x-3)

=2x(x-3)

d: =(x+3)(x^2-3x+9)-4x(x+3)

=(x+3)(x^2-7x+9)

e: =(x^2-8x+7)(x^2-8x+15)-20

=(x^2-8x)^2+22(x^2-8x)+85

=(x^2-8x+17)(x^2-8x+5)

Tìm x

a) Ta có: \(16x^2-\left(4x-5\right)^2=15\)

\(\Leftrightarrow16x^2-\left(16x^2-40x+25\right)-15=0\)

\(\Leftrightarrow16x^2-16x^2+40x-25-15=0\)

\(\Leftrightarrow40x-40=0\)

\(\Leftrightarrow40x=40\)

hay x=1

Vậy: x=1

b) Ta có: \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)

\(\Leftrightarrow4x^2+12x+9-4\left(x^2-1\right)-49=0\)

\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)

\(\Leftrightarrow12x-36=0\)

\(\Leftrightarrow12x=36\)

hay x=3

Vậy: x=3

d) Ta có: \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)

\(\Leftrightarrow2\left(x^2+2x+1\right)-\left(x^2-9\right)-\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\)

\(\Leftrightarrow12x-5=0\)

\(\Leftrightarrow12x=5\)

hay \(x=\frac{5}{12}\)

Vậy: \(x=\frac{5}{12}\)

e) Ta có: \(\left(x-5\right)^2-x\left(x-4\right)=9\)

\(\Leftrightarrow x^2-10x+25-x^2+4x-9=0\)

\(\Leftrightarrow-6x+16=0\)

\(\Leftrightarrow6x=16\)

hay \(x=\frac{8}{3}\)

Vậy: \(x=\frac{8}{3}\)

f) Ta có: \(\left(x-5\right)^2-\left(x-4\right)\left(1-x\right)=0\)

\(\Leftrightarrow x^2-10x+25-\left(x-x^2-4+4x\right)=0\)

\(\Leftrightarrow x^2-10x+25-x+x^2+4-4x=0\)

\(\Leftrightarrow2x^2-15x+29=0\)

\(\Leftrightarrow2\left(x^2-\frac{15}{2}x+\frac{29}{2}\right)=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{15}{4}+\frac{225}{16}+\frac{7}{16}=0\)

\(\Leftrightarrow\left(x-\frac{15}{4}\right)^2+\frac{7}{16}=0\)(vô lý)

Vậy: x∈∅

10 tháng 12 2016

(x+2)^2-(x-2)(x+2)=0

=> (x+2)(x+2-x+2)=0

=> (x+2).4=0

=> x+2=0

=> x=-2

mấy câu còn lại tự làm nha

10 tháng 12 2016

a) (x+2)^2-(x-2)(x+2)=0 

 (x+2).[x+2-x+2]=0

(x+2).4=0

 x+2=0

x=-2

 b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18

   4x2-4x+1-4x2+25=18

   26-4x=18

   4x=8

    x=2

 c)( 2x - 1)^2 - 25 = 0

    ( 2x - 1)^2 - 52 = 0

     (2x-1-5)(2x-1+5)=0

    (2x-6)(2x+4)=0

\(\Rightarrow\orbr{\begin{cases}2x-6=0\\2x+4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

\(\left(x^2+2x+3\right)^2-9.\left(x^2+2x+3\right)+18=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)^2-3\left(x^2+2x+3\right)-6\left(x^2+2x+3\right)+18=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x\right)-6\left(x^2+3x\right)=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x+3=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-3\\x=1\end{matrix}\right.\) ( thỏa mãn )