\(x^2+2\sqrt{5}x+4=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

      x2 + \(2\sqrt{5}x+4=0\)

Có \(\Delta'=\left(\sqrt{5}\right)^2-4=5-4\)

            = 1 

-> x1 = \(\frac{-\sqrt{5}+1}{1}=1-\sqrt{5}\)

     x2 =- \(\sqrt{5}-1\)

26 tháng 4 2020

Phương trình \(x^2+2\sqrt{5}x+4=0\) ta có:

\(\Delta'=\left(\sqrt{5}\right)^2-4=1\Rightarrow\sqrt{\Delta'}=1\)

=> PT có 2 nghiệm \(\hept{\begin{cases}x_1=\frac{-\sqrt{5}-1}{2}\\x_2=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

11 tháng 6 2019

\(f,\sqrt{x^2-25}-\sqrt{x-5}=0\)

=> \(\sqrt{x^2-25}=\sqrt{x-5}\)

=>\(x^2-25=x-5\)

=>\(x^2-x=25-5=20\)

=>( đến đoạn này mình xin chịu )

11 tháng 6 2019

\(a,\sqrt{16x}=8\)

=>\(16x=8^2\)

=>\(16x=64\)

=>\(x=64:16=4\)

Vậy \(x\in\left\{4\right\}\)

\(b,\sqrt{x^2}=2x-1\)

=>\(x=2x-1\)

=>\(2x-x=1\)

=>\(x=1\)

Vậy \(x\in\left\{1\right\}\)

\(c,\sqrt{9.\left(x-1\right)}=21\)

=>\(9.\left(x-1\right)=21^2=441\)

=> \(x-1=441:9=49\)

=>\(x=49+1=50\)

Vậy \(x\in\left\{50\right\}\)

\(d,\sqrt{4\left(1-x\right)^2}-6=0\)

=>\(\sqrt{4\left(1-x\right)^2}=0+6=6\)

=> \(4\left(1-x\right)^2=6^2=36\)

=>\(\left(1-x\right)^2=36:4=9\)

=>\(1-x=\sqrt{9}=3\)

=>\(x=1-3=-2\)

Vậy \(x\in\left\{-2\right\}\)

\(g,\sqrt{9\left(2-3x\right)^2}=6\)

=> \(9.\left(2-3x\right)^2=6^2=36\)

=> \(\left(2-3x\right)^2=36:9=4\)

=> \(2-3x=\sqrt{4}=2\)

=>\(3x=2-2=0\)

=>\(x=0:3=0\)

Vậy \(x\in\left\{0\right\}\)

( còn các bài còn lại mình sẽ nghĩ tiếp , HS6-7 làm bài )

6 tháng 10 2020

1) đk: \(x\ge1\)

Ta có: \(\sqrt{x-1}-\sqrt{2x\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{2x\left(x-1\right)}\)

\(\Leftrightarrow x-1=2x^2-2x\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Vậy x = 1

2) đk: \(x\ge\frac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2=4x^2-4x+1\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\Leftrightarrow\left(x+2\right)^2-5=0\)

\(\Leftrightarrow\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{5}\left(ktm\right)\\x=-2-\sqrt{5}\left(ktm\right)\end{cases}}\)

=> PT vô nghiệm

3) đk: \(x\ge-1\)

Ta có: \(\sqrt{x+1}+\sqrt{9x+9}=4\)

\(\Leftrightarrow\sqrt{x+1}+3\sqrt{x+1}=4\)

\(\Leftrightarrow4\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=1\)

\(\Rightarrow x=0\)

6 tháng 10 2020

4) đk: \(x\ge2\)

Ta có: \(\sqrt{x-2}-\sqrt{x\left(x-2\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}=\sqrt{x\left(x-2\right)}\)

\(\Leftrightarrow x-2=x\left(x-2\right)\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)

Vậy x = 2

6) đk: \(x\ge-\frac{7}{5}\)

Ta có: \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)

\(\Leftrightarrow\frac{2x-3}{x-1}=2\)

\(\Leftrightarrow2x-3=2x-2\)

\(\Leftrightarrow0x=1\) vô lý

=> PT vô nghiệm

15 tháng 12 2019

chủ yếu là bình phương hai vế,đặt ĐK rồi chuyển thành phương trình bậc hai rồi giải

15 tháng 12 2019

1.\(ĐKXĐ:x\ge0\)

\(PT\Leftrightarrow x^2+x=x^2\Leftrightarrow x=0\)(t/m)

Vậy pt có nghiêm duy nhất là x=0

2.ĐKXĐ:\(1-x^2\ge0\Leftrightarrow-1\le x\le1\)

\(PT\Leftrightarrow1-x^2=x^2-2x+1\left(x\ge1\right)\)

\(\Leftrightarrow2x^2-2x=0\)

\(\Leftrightarrow2x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai,vi,x\ge1\right)\\x=1\left(chon\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm duy nhất là x=1

3.ĐKXĐ:\(x^2-4x+3\ge0\)

\(\sqrt{x^2-4x+3}=x-2\)

\(\Leftrightarrow x^2-4x+3=x^2-4x+4\left(x\ge2\right)\)

\(\Leftrightarrow0=1\left(Sai\right)\)

Vậy pt đã cho vô nghiệm

4.ĐKXĐ:\(x^2-1\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

\(\sqrt{x^2-1}-x^2+1=0\)

\(\Leftrightarrow\sqrt{x^2-1}-\left(x^2-1\right)=0\)

\(\Leftrightarrow\sqrt{x^2-1}\left(1-\sqrt{x^2-1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm1\left(tm\right)\\\sqrt{x^2-1}=1\left(\cdot\right)\end{matrix}\right.\)

Giải (*): \(\left(\cdot\right)\Leftrightarrow x^2-1=1\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\left(tm\right)\)

Kết luận: tập nghiệm của pt là:\(S=\left\{\pm1;\pm\sqrt{2}\right\}\)

5.ĐKXĐ:\(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

\(\sqrt{x^2-4}-x+2=0\)

\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x-2\right)}-\left(x-2\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x-2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}-\sqrt{x-2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=\sqrt{x-2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x+2=x-2\Leftrightarrow2=-2\left(vo,li,nen,loai\right)\end{matrix}\right.\)

Vậy pt đã cho có nghiệm duy nhất là x=2

6.ĐKXĐ:\(1-2x^2\ge0\Leftrightarrow-\frac{\sqrt{2}}{2}\le x\le\frac{\sqrt{2}}{2}\)

\(\sqrt{1-2x^2}=x-1\)

\(\Leftrightarrow1-2x^2=x^2-2x+1\left(x\ge1\right)\)

\(\Leftrightarrow3x^2-2x=0\)

\(\Leftrightarrow x\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=\frac{2}{3}\left(loai\right)\end{matrix}\right.\)

Kết luận: PT đã cho vô nghiệm

8 tháng 8 2019

b,

+ Với \(x=0\) \(\Rightarrow PTVN\)

+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :

\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)

Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)

\(\Leftrightarrow t^2+18-16t+46=0\)

\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)

\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)

9 tháng 8 2019

cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))

14 tháng 8 2017

I) xd mọi x

\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)

\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)

\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)

kết luận

\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)

a: =>2x-1=5

=>2x=6

=>x=3

b: \(\Leftrightarrow\sqrt{3}\left(x^2-2\right)=0\)

=>x^2=2

=>\(x=\pm\sqrt{2}\)

c: =>x-5=9

=>x=14

d: \(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)

=>x+2=0

=>x=-2

22 tháng 9 2019

\(\left(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\right)\)

\(=\frac{\sqrt{2}\left(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{10+2\sqrt{21}}+\sqrt{10-2\sqrt{21}}}{\sqrt{2}}\)

\(=\frac{\sqrt{3+2\sqrt{3.7}+7}+\sqrt{3-2\sqrt{3.7}+7}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}}{\sqrt{2}}\)

\(=\frac{|\sqrt{3}-\sqrt{7}|+|\sqrt{3}+\sqrt{7}|}{\sqrt{2}}\)

\(=\frac{-\sqrt{3}+\sqrt{7}+\sqrt{3}+\sqrt{7}}{\sqrt{2}}\)

\(=\frac{2\sqrt{7}}{\sqrt{2}}\)

\(=\sqrt{14}\)

22 tháng 9 2019

\(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{2}-\sqrt{3}}\)

\(=\frac{1}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{1}{(\sqrt{2}-\sqrt{3})\left(\sqrt{2}+\sqrt{3}\right)}\)

\(=\frac{2}{2-3}=\frac{2}{-1}=-2\)