K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>2x-1=5

=>2x=6

=>x=3

b: \(\Leftrightarrow\sqrt{3}\left(x^2-2\right)=0\)

=>x^2=2

=>\(x=\pm\sqrt{2}\)

c: =>x-5=9

=>x=14

d: \(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)

=>x+2=0

=>x=-2

NV
2 tháng 4 2020

\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}+\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{\left(2\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{2}-\sqrt{3}\right)}-\frac{5\left(\sqrt{8}-\sqrt{3}\right)}{\left(\sqrt{8}-\sqrt{3}\right)\left(\sqrt{8}+\sqrt{3}\right)}\)

\(=\sqrt{3}+1+\sqrt{3}-1+\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{5}-\frac{5\left(\sqrt{8}-\sqrt{3}\right)}{5}\)

\(=2\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{8}+\sqrt{3}\)

\(=4\sqrt{3}\)

Giải pt:

1/ \(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x=6\Rightarrow x=3\)

2/ \(\Leftrightarrow\sqrt{3}x^2=\sqrt{12}\Leftrightarrow x^2=\sqrt{4}=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

3/ \(\Leftrightarrow x-5=9\Rightarrow x=14\)

4/ Đề thiếu

5/ \(\Leftrightarrow\left|x-3\right|=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=9\\x-3=-9\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\)

NV
2 tháng 4 2020

6/ \(\Leftrightarrow2\left|1-x\right|=6\)

\(\Leftrightarrow\left|1-x\right|=3\Leftrightarrow\left[{}\begin{matrix}1-x=3\\1-x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

7/ \(\Leftrightarrow9\left(x-1\right)=21^2\)

\(\Leftrightarrow x-1=49\Rightarrow x=50\)

8/ \(\Leftrightarrow x+1=2^3=8\)

\(\Rightarrow x=7\)

9/ \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{7}{2}\end{matrix}\right.\)

10/ \(\Leftrightarrow\sqrt{2}x=\sqrt{50}\Leftrightarrow x=\sqrt{25}\Rightarrow x=5\)

11/ \(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

12/ \(\Leftrightarrow3-2x=\left(-2\right)^3=-8\)

\(\Leftrightarrow2x=11\Rightarrow x=\frac{11}{2}\)

24 tháng 8 2017

a) \(\sqrt{3}x-\sqrt{12}=0< =>\sqrt{3}x=\sqrt{12}=>x=2\)

Vay S = { 2 }

b) \(\sqrt{2}x+\sqrt{2}=\sqrt{8}+\sqrt{18}< =>\sqrt{2}x=\sqrt{8}+\sqrt{18}-\sqrt{2}< =>\sqrt{2}x=2\sqrt{2}+3\sqrt{2}-\sqrt{2}\) <=> \(\sqrt{2}x=4\sqrt{2}=>x=4\)

Vay S = { 4 }

c) \(\sqrt{5}x^2-\sqrt{20}=0< =>\sqrt{5}x^2=\sqrt{20}< =>x^2=2=>x=\sqrt{2}\)

Vay S = {\(\sqrt{2}\) }

d) \(\sqrt{x^2+6x+9}=3x+6< =>\sqrt{\left(x+3\right)^2}=3x+6< =>x+3=3x+6< =>-2x=\) \(3=>x=-\dfrac{3}{2}\)

Vay S = { - 3/2 }

e) \(\sqrt{x^2-4x+4}-2x+5=0< =>\sqrt{\left(x-2\right)^2}-2x+5=0< =>x-2-2x+5=0\) <=> \(-x+3=0< =>-x=-3=>x=3\)

Vay S = { 3 }

F) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)

<=> \(\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)

Vay S = { 1/2 }

g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2< =>\sqrt{\dfrac{2x-3}{x-1}}=2< =>\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)

24 tháng 8 2017

bạn chưa có ĐKXĐ nên chưa xét kết quả có đúng vs Đk ko, có vài câu sai kết quả

30 tháng 7 2019

Đề câu c ptrinh = 4 là phải riêng ra chứ

\(a,\frac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\)

\(\Rightarrow3x+2=2\sqrt{x+2}.\sqrt{x+2}\)

\(\Rightarrow3x+2=2\left(x+2\right)\)

\(\Rightarrow3x+2=2x+4\)

\(\Rightarrow3x-2x=4-2\)

\(\Rightarrow x=2\)

\(b,\sqrt{4x^2-1}-2\sqrt{2x+1}=0\)

\(\Rightarrow\sqrt{\left(2x+1\right)\left(2x-1\right)}-2\sqrt{2x+1}=0\)

\(\Rightarrow\sqrt{2x+1}\left(\sqrt{2x-1}-2\right)=0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{2x+1}=0\\\sqrt{2x-1}-2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x+1=0\\\sqrt{2x-1}=2\end{cases}\Rightarrow}\orbr{\begin{cases}2x=-1\\2x-1=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\2x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{2}\end{cases}}}\)

\(c,\sqrt{x-2}+\sqrt{4x-8}-\frac{2}{5}\sqrt{\frac{25x-50}{4}}=4\)

\(\Rightarrow\sqrt{x-2}+\sqrt{4\left(x-2\right)}-\frac{2}{5}\sqrt{\frac{25\left(x-2\right)}{4}}=4\)

\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\frac{2}{5}.\frac{5\sqrt{x-2}}{2}=4\)

\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\sqrt{x-2}=4\)

\(\Rightarrow2\sqrt{x-2}=4\)

\(\Rightarrow\sqrt{x-2}=2\)

\(\Rightarrow x-2=4\)

\(\Rightarrow x=6\)

\(d,\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)

\(\Rightarrow\sqrt{x+4}=\sqrt{1-2x}+\sqrt{1-x}\)

\(\Rightarrow x+4=1-2x+2\sqrt{\left(1-2x\right)\left(1-x\right)}+1-x\)

\(\Rightarrow x+4=2-3x+2\sqrt{1-3x+2x^2}\)

\(\Rightarrow x+4-2+3x=2\sqrt{1-3x+2x^2}\)

\(\Rightarrow4x+2=2\sqrt{1-3x+2x^2}\)

\(\Rightarrow2x+1=\sqrt{1-3x+2x^2}\)

\(\Rightarrow4x^2+4x+1=1-3x+2x^2\)

\(\Rightarrow4x^2-2x^2+4x+3x+1-1=0\)

\(\Rightarrow2x^2+7x=0\)

\(\Rightarrow x\left(2x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-7}{2}\end{cases}}}\)

\(e,\frac{2x}{\sqrt{5}-\sqrt{3}}-\frac{2x}{\sqrt{3}+1}=\sqrt{5}+1\)

\(\frac{2x\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\frac{2x\left(\sqrt{3}-1\right)}{3-1}=\sqrt{5}+1\)

\(\Rightarrow x\left(\sqrt{5}+\sqrt{3}\right)-x\left(\sqrt{3}-1\right)=\sqrt{5}+1\)

\(\Rightarrow\sqrt{5}x+\sqrt{3}x-\sqrt{3x}+x=\sqrt{5}+1\)

\(\Rightarrow\sqrt{5}x+x=\sqrt{5}+1\)

\(\Rightarrow x\left(\sqrt{5}+1\right)=\sqrt{5}+1\)

\(\Rightarrow x=1\)

20 tháng 1 2019

a.

\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)

\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)

\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)

b.

\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)

\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)

\(\Leftrightarrow x^2-8=5x+1\)

\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)

............................

tương tự ..

c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)

=>x-5=0 hoặc x+5=1

=>x=-4 hoặc x=5

d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=7/2 hoặc x=-3/2

e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

=>x-2=0 hoặc 3 căn x+2=1

=>x=2 hoặc x+2=1/9

=>x=-17/9 hoặc x=2

31 tháng 8 2017

ai giải hộ với nhanh cái mk sắp đi học òi

2 tháng 9 2017

thui chữa òi ko cần làm đâu

14 tháng 11 2018

a)\(2\sqrt{3}-\sqrt{4+x^2}=0\)

\(\Leftrightarrow\sqrt{12}-\sqrt{4+x^2}=0\)

\(\Leftrightarrow\sqrt{4+x^2}=\sqrt{12}\)

\(\Leftrightarrow4+x^2=12\Leftrightarrow x^2=8\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\end{matrix}\right.\)

vậy ....

b)\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\) điều kiện xác định x\(\ge0\)

\(\Leftrightarrow3\sqrt{2x}+5\sqrt{4}\sqrt{2x}-\sqrt{9}\sqrt{2x}=20\)

\(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}=20\)

\(\Leftrightarrow10\sqrt{2x}=20\Leftrightarrow\sqrt{2x}=2\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\) (tm)

Vậy ....

c)\(\sqrt{4\left(x+2\right)^2}=8\Leftrightarrow4\left(x+2\right)^2=64\)

\(\Leftrightarrow\left(x+2\right)^2=16\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)

Vậy ...

14 tháng 11 2018

a) pt <=> \(\sqrt{4+x^2}=2\sqrt{3}\)

<=> x2 + 4 = 12

<=> x2 = 8

<=> x = \(\pm2\sqrt{2}\)

b) ĐKXĐ: x ≥ 0

pt <=> \(3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}=20\)

<=> \(10\sqrt{2x}\) = 20

<=> \(\sqrt{2x}=2\)

<=> x = 2 (TM)

c) pt <=> 2|x + 2| = 8

<=> |x + 2| = 4

<=> \(\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)

d) ĐKXĐ: x ≥ 2

pt <=> \(\sqrt{x-2}=3\sqrt{x^2-4}\)

<=> 9x2 - 12 = x - 2

<=> 9x2 - x - 10 = 0

<=> 9(x + 1)(x - \(\dfrac{10}{9}\)) = 0

<=> \(\left[{}\begin{matrix}x=-1\\x=\dfrac{10}{9}\end{matrix}\right.\)(KTM)

e) pt <=> 4x + 1 = -7

<=> 4x = -8

<=> x = -2

16 tháng 12 2016

a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\)
(nhận)

b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.

b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK

Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)

c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK

Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)

16 tháng 12 2016

Giời, có thế cũng hok hiểu, lật sách giải ra coi :v