K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow x^2-2020x+2019=0\)

=>(x-1)(x-2019)=0

=>x=1 hoặc x=2019

28 tháng 2 2022

\(-x^2+2020x-2019=0\)

\(\Leftrightarrow x^2-2020x+2019=0\)

\(\Leftrightarrow x^2-x-2019x+2019=0\)

\(\Leftrightarrow x\left(x-1\right)-2019\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2019\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2019=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2019\end{matrix}\right.\)

Chứng minh hay giải PT??

31 tháng 8 2018

2020.2019^5 = (2019+1).2019^5 = 2019^6+2019^5 làm tương tự với các x còn lại

A= 2019^6 - 2019^6 +.....-2019^2-2019 +2020 = 1 vậy A=1

30 tháng 4 2019

ta có x = 2019 \(\Rightarrow\)2020 = x+1  

thay 2020 = x+1 vào A ta có

\(A=x^6-\left(x+1\right).x^5+\left(x+1\right).x^4-...-\left(x+1\right).x+2020\)

\(=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2020\)

\(=-x+2020\)

\(=-2019+2020\)

\(=1\)

vậy A = 1

học tốt !!!

7 tháng 7 2019
  1. Tập xác định của phương trình

  2. Biến đổi vế trái của phương trình

  3. Phương trình thu được sau khi biến đổi

  4. Lời giải thu được

Kết quả: Giải phương trình với tập xác định x ∈ ∅
7 tháng 7 2019

Cái này tui search mạng nhá

1 tháng 10 2019

\(DK:x\ge\frac{2019}{2020}\)

\(\Leftrightarrow\left(2020x-2019-2\sqrt{2020x-2019}+1\right)+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2020x-2019}-1\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2020x-2019}-1=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow x=1\left(n\right)\)

Vay nghiem cua PT la \(x=1\)

NV
1 tháng 10 2019

ĐKXĐ:...

\(\Leftrightarrow x^2-2x+1+2020x-2019-2\sqrt{2020x-2019}+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2020x-2019}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{2020x-2019}-1=0\end{matrix}\right.\)

\(\Rightarrow x=1\)

NV
26 tháng 12 2020

ĐKXĐ: \(x\ge\dfrac{2020}{2019}>0\)

\(\Leftrightarrow\sqrt{2020x-2019}+\sqrt{2019x-2020}+2019\left(x+1\right)=0\)

\(\Leftrightarrow\dfrac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)

Do \(x>0\) nên hiển nhiên vế trái dương.

Pt vô nghiệm

26 tháng 12 2020

ĐKXĐ: x≥20202019>0x≥20202019>0

⇔√2020x−2019+√2019x−2020+2019(x+1)=0⇔2020x−2019+2019x−2020+2019(x+1)=0

⇔x+1√2020x−2019+√2019x−2020+2019(x+1)=0⇔x+12020x−2019+2019x−2020+2019(x+1)=0

Do x>0x>0 nên hiển nhiên vế trái dương.

Pt vô nghiệm