Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với \(x\ge\frac{2020}{2019}\)
có \(\sqrt{2020x-2019}+2019\left(x+1\right)-\sqrt{2019x-20120}\)\(=0\)
\(\Leftrightarrow\sqrt{2020x-2019}-\sqrt{2019x-2020}=-2019\left(x+1\right)\)
\(\Leftrightarrow2020x-2019-\left(2019x-2020\right)=-2019\left(x+1\right)\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)\)
\(\Leftrightarrow\left(x+1\right)+2019\left(x+1\right)\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[1+2019\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)\right]=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)(không thỏa mãn)
vậy phương trình vô nghiệm
\(DK:x\ge\frac{2020}{2019}\)
PT\(\Leftrightarrow\left(\sqrt{2020x-2019}-\sqrt{2019x-2020}\right)+2019\left(x+1\right)=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\right)=0\)
:)
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóvhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó
ĐKXĐ: \(x\ge\dfrac{2020}{2019}>0\)
\(\Leftrightarrow\sqrt{2020x-2019}+\sqrt{2019x-2020}+2019\left(x+1\right)=0\)
\(\Leftrightarrow\dfrac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)
Do \(x>0\) nên hiển nhiên vế trái dương.
Pt vô nghiệm
ĐKXĐ: x≥20202019>0x≥20202019>0
⇔√2020x−2019+√2019x−2020+2019(x+1)=0⇔2020x−2019+2019x−2020+2019(x+1)=0
⇔x+1√2020x−2019+√2019x−2020+2019(x+1)=0⇔x+12020x−2019+2019x−2020+2019(x+1)=0
Do x>0x>0 nên hiển nhiên vế trái dương.
Pt vô nghiệm
đk : \(x\ge-3\) Viết phương trình thành \(x^4\left(\sqrt{x+3}-2\right)=2019\left(1-x\right)\)
\(\Leftrightarrow\frac{x^4\left(\sqrt{x+3}-2\right)\left(\sqrt{x+3}+2\right)}{(\sqrt{x+3}+2)}=2019\left(1-x\right)\) \(\Leftrightarrow\frac{x^4\left(x-1\right)}{\left(\sqrt{x+3}+2\right)}+2019\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)[\frac{x^4}{\sqrt{x+3}+2}+2019]=0\Leftrightarrow x=1.\) Vì \(\frac{x^4}{\sqrt{x+3}+2}+2019>0\) với mọi giá trị của x thuộc tập xác định.
Đáp số x = 1
ĐKXĐ: \(x\ge-3\)
\(x^4\sqrt{x+3}-2x^4+2019x-2019=0\)
\(\Leftrightarrow x^4\left(\sqrt{x+3}-2\right)+2019\left(x-1\right)=0\)
\(\Leftrightarrow x^4\left(\frac{x-1}{\sqrt{x+3}+2}\right)+2019\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x^4}{\sqrt{x+3}+2}+2019\right)=0\)
\(\Leftrightarrow x-1=0\) (ngoặc phía sau luôn dương)
\(\Rightarrow x=1\)
mình nghĩ ra 2 cách bn thik cách nào thì làm nhé