Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)
ĐK:\(x\ne0\)
\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)
* Tính K;
Ta có: x+y+z=0 => (x+y+z)2=0
<=> x2+y2+z2+2(xy+yz+zx)=0(1)
Vì xy+yz+zx=0(2)
Từ (1)(2) => x2+y2+z2=0
Mà \(x^2;y^2;z^2\ge0\)
=> x=y=z=0
=> K= \(\left(-1\right)^{2014}+0^{2015}+1^{2016}=1+1=2\)
* Tính F
Ta có: F= \(a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b-1\right)\)
= \(a^3+a^2-b^3+b^2+ab-0\)( vì a-b=1 nên a-b-1=0)
= \(\left(a^3-b^3\right)+\left(a^2+ab+b^2\right)\)
=\(\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)
= \(2\left(a^2+ab+b^2\right)\)
1. \(\Leftrightarrow\left(3x-1\right)\left(\sqrt{5}x-2\right)\ge0\Rightarrow\left[{}\begin{matrix}x\le\frac{1}{3}\\x\ge\frac{2}{\sqrt{5}}\end{matrix}\right.\)
2. \(\Leftrightarrow\frac{\left(3-2x\right)\left(3+2x\right)}{2x-3}\ge0\Leftrightarrow\left[{}\begin{matrix}x\ne\frac{3}{2}\\x\le-\frac{3}{2}\end{matrix}\right.\)
3. \(\left|x-2\right|\ge3\Leftrightarrow\left[{}\begin{matrix}x-2\ge3\\x-2\le-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge5\\x\le-1\end{matrix}\right.\)
4. \(\Leftrightarrow-10\le3x+1\le10\Rightarrow-\frac{11}{3}\le x\le3\)
5. \(\Leftrightarrow\frac{3x^2-x+2}{x^2-9}-3\le0\Leftrightarrow\frac{-x+29}{\left(x-3\right)\left(x+3\right)}\le0\Rightarrow\left[{}\begin{matrix}-3< x< 3\\x\ge29\end{matrix}\right.\)
6. \(\Leftrightarrow\frac{4}{\left(x-2\right)^2}+\frac{1}{x-2}>0\Leftrightarrow\frac{x+2}{\left(x-2\right)^2}\ge0\Rightarrow\left[{}\begin{matrix}x\ge-2\\x\ne2\end{matrix}\right.\)
Câu 2 :
b) \(\frac{x}{3}=\frac{-2}{9}\)
=> x = \(\frac{-2}{9}.3\) = \(\frac{-2}{3}\)
c) \(0,5x-\frac{2}{3}x=\frac{7}{12}\)
=> \(\frac{1}{2}x-\frac{2}{3}x=\frac{7}{12}\)
=> \(-\frac{1}{6}\)x = \(\frac{7}{12}\)
=> x = \(\frac{7}{12}:\frac{-1}{6}\)
=> x =\(\frac{-7}{2}\)
Đề 1 câu 5 :
\(3B=3^2+3^3+3^4+...+3^{201}\)
\(\Rightarrow2B=3B-B=3^{201}-3\)
\(\Rightarrow2B+3=\left(3^{201}-3\right)+3=3^{201}\)
Do đó n = 201
a: \(\overrightarrow{x}=\overrightarrow{a}+\overrightarrow{b}\)
nên \(\overrightarrow{x}=\left(1+0;-2+3\right)\)
hay \(\overrightarrow{x}=\left(1;1\right)\)
b: \(\overrightarrow{u}=3\cdot\overrightarrow{a}-2\overrightarrow{b}\)
nên \(\overrightarrow{u}=\left(3\cdot1-2\cdot0;-2\cdot3-2\cdot3\right)\)
hay \(\overrightarrow{u}=\left(3;-12\right)\)
\(x=\frac{2^{2016}}{2^{2014}}=2^{2016-2014}=2^2=4\)
sai r