Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) 13\(\frac{1}{3}\) : 1\(\frac{1}{3}\) = 26 : (2x - 1)
<=> \(\frac{40}{3}:\frac{4}{3}\) = 13x - 26
<=> 10 + 26 = 13x
<=> 13x = 36
<=> x = \(\frac{36}{13}\)
b) 0,2 : 1\(\frac{1}{5}\) = \(\frac{2}{3}\) : (6x + 7)
<=> \(\frac{1}{5}:\frac{6}{5}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)
<=> \(\frac{1}{6}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)
<=> \(\frac{1}{9}x\) = \(\frac{2}{21}.\frac{1}{6}\) = \(\frac{1}{63}\)
<=> x = \(\frac{1}{7}\)
c) \(\frac{37-x}{x+13}\) = \(\frac{3}{7}\)
<=> (37 - x) . 7 = 3.(x + 13)
<=> 119 - 7x = 3x + 39
<=> -7x - 3x = 39 - 119
<=> -10x = -80
<=> x = 8
d) \(\frac{x-1}{x+5}=\frac{6}{7}\)
<=> 7(x - 1) = 6(x + 5)
<=> 7x - 7 = 6x + 30
<=> 7x - 6x = 30 + 7
<=> x = 37
e)
2\(\frac{2}{\frac{3}{0,002}}\) = \(\frac{1\frac{1}{9}}{x}\)
<=> \(\frac{1501}{750}\) = \(\frac{10}{9}:x\)
<=> x = \(\frac{10}{9}:\frac{1501}{750}\) = \(\frac{2500}{4503}\)
Bài 2. đề sai
Bài 3.
a) 6,88 : x = \(\frac{12}{27}\)
<=> x = 6,88 : \(\frac{12}{27}\)
<=> x = 15,48
b) 8\(\frac{1}{3}\) : \(11\frac{2}{3}\) = 13 : 2x
<=> \(\frac{25}{3}:\frac{35}{3}\) = 13 : 2x
<=> \(\frac{5}{7}=13:2x\)
<=> 2x = \(13:\frac{5}{7}\) = \(\frac{91}{5}\)
<=> x = 9,1
a/ ĐKXĐ: \(x\ne\left\{1;3\right\}\)
\(\Leftrightarrow\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)
\(\Leftrightarrow x^2+2x-15=x^2-9\)
\(\Leftrightarrow2x=6\Rightarrow x=3\) (ktm)
Vậy pt vô nghiệm
b/ ĐKXĐ: \(x\ne1\)
\(\Leftrightarrow\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{x^2+x+1}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow x^2+x+1+2\left(x-1\right)=3x^2\)
\(\Leftrightarrow2x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=\frac{1}{2}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne\pm4\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{\left(x-4\right)\left(x+4\right)}+\frac{96}{\left(x-4\right)\left(x+4\right)}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
\(\Leftrightarrow5x^2-80+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2+16=5x^2+2x\)
\(\Rightarrow x=8\)
a/ ĐKXĐ: ...
\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)
\(\Rightarrow x+\frac{1}{4x}=a^2-1\)
Pt trở thành:
\(3a=2\left(a^2-1\right)-7\)
\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)
\(\Leftrightarrow2x-6\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)
b/ ĐKXĐ:
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)
\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
d/ ĐKXĐ: ...
\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)
\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)
\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)
\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)
\(\Leftrightarrow4x^2-17x+4=0\)