K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

thêm đk x nguyên nha\(\left(x+2\right)^2-\left(x-2\right)^2=\left(x^2+4x+4\right)-\left(x^2-4x+4\right)=8x⋮8\left(đpcm\right)\)

4 tháng 7 2017

\(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

Thay x - y = 7

\(\Rightarrow A=49+14+37=100\)

Vậy A = 100 khi x - y = 7

22 tháng 8 2016

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(a^2+b^2\right)^2}{a+b}\)
\(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{\left(x^4+y^4+2x^2y^2\right)}{a+b}\Rightarrow x^4ab+x^4b^2+y^4ab+y^4a^2=x^4ab+y^4ab+2x^2y^2ab\)
\(\Leftrightarrow x^4b^2+y^4a^2-2x^2y^2ab=0\Leftrightarrow\left(x^2b-y^2a\right)^2=0\Leftrightarrow x^2b=y^2a\Leftrightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\)
\(\Rightarrow\frac{x^{2010}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\frac{2\left(x^2+y^2\right)^{1006}}{\left(a+b\right)^{1006}}=\frac{2}{\left(a+b\right)^{1006}}\)
 

22 tháng 8 2016

Nếu để ý thì bài này dùng coossi sờ vác ngay bước đầu sẽ ngắn đi rất nhiều 

30 tháng 9 2016

\(x^2+y^2=a^2+b^2\Rightarrow x^2-a^2=b^2-y^2\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\left(1\right)\)

Mà \(x+y=a+b\Rightarrow x-a=b-y\)

+ Nếu \(x-a=b-y=0\Leftrightarrow x=a;y=b\) thì ( 1 ) thành 0 = 0 ( thỏa mãn )

+ Nếu \(x-a=b-y\ne0\) thì ( 1 ) \(\Leftrightarrow x=a=b+y\Leftrightarrow x-y=b-a\)

Lại có: \(x+y=a+b\)

Cộng 2 phương trình theo vế , ta được: \(2x=2b\Rightarrow x=b\)

Trừ 2 phương trình theo vế, ta được: \(2y=2a\Rightarrow y=a\)

Vậy:\(x=a;y=b\) hoặc \(x=b;y=a\)

=> .........................................

 

3 tháng 5 2017

(2x+m)(x-1)-2x2+2m-2=0

<=>2x2-2x2+mx-2x-m+2m-2=0

<=>x(m-2)+m-2=0

<=>(m-2)x=-(m-2)

*)Với m=2=>0x=0(thõa mãn với mọi x)

*)Với m khác 2=>x=-1

Vậy m=2 thì phương trình có nghiệm là 1 số không âm

3 tháng 5 2017

Mình nghĩ có nhiều giá trị mà.

Mình làm ra rồi, ra kết quả là 1<m\(\le\)2 cơ

8 tháng 3 2020

Mình làm như thế này không biết đúng không:

x2=5+2yx2=5+2y

Xét x chẵn pt vô nghiệm

Xét x lẻ ⇒x=2k+1⇒x=2k+1 ; (kϵZ)(kϵZ)

4k2+4k+1=5+2y4k2+4k+1=5+2y

⇔4k2+4k−2y=4⇔4k2+4k−2y=4

⇔⇔2k2+2k−y=22k2+2k−y=2

Suy ra y chẵn trái với giả thiết

Do đó pt trên không có nghiệm nguyên 

8 tháng 3 2020

Mình làm như thế này không biết đúng không:

x2=5+2yx2=5+2y

Xét x chẵn pt vô nghiệm

Xét x lẻ ⇒x=2k+1⇒x=2k+1 ; (kϵZ)(kϵZ)

4k2+4k+1=5+2y4k2+4k+1=5+2y

⇔4k2+4k−2y=4⇔4k2+4k−2y=4

⇔⇔2k2+2k−y=2v

6 tháng 5 2020

Khi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2 

=> đa thức dư có bậc cao nhất là 1 

=> G/s: đa thức dư là: r(x) = a x + b 

Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b 

Vì f ( x ) chia ( x - 2 ) dư 2016 

=> f ( 2 ) = 2016   => a.2 + b = 2016 (1) 

Vì f(x ) chia ( x - 3 ) dư 2017 

=> f ( 3) = 2017 => a.3 + b  = 2017 (2) 

Từ (1) ; (2) => a = 1; b = 2014 

=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014

và đa thức dư là: x + 2014

27 tháng 11 2017

a) \(\dfrac{2}{x+3}+\dfrac{1}{x}\) MTC: \(x\left(x+3\right)\)

\(=\dfrac{2x}{x\left(x+3\right)}+\dfrac{x+3}{x\left(x+3\right)}\)

\(=\dfrac{2x+x+3}{x\left(x+3\right)}\)

\(=\dfrac{3x+3}{x\left(x+3\right)}\)

b) \(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}\)

\(=\dfrac{x+1}{2\left(x-1\right)}+\dfrac{-2x}{\left(x-1\right)\left(x+1\right)}\) MTC: \(2\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\dfrac{-2x.2}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2-4x}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)-4x}{2\left(x-1\right)}\)

\(=\dfrac{x+1-4x}{2\left(x-1\right)}\)

\(=\dfrac{1-3x}{2\left(x-1\right)}\)

c) \(\dfrac{y-12}{6y-36}+\dfrac{6}{y^2-6y}\)

\(=\dfrac{y-12}{6\left(y-6\right)}+\dfrac{6}{y\left(y-6\right)}\) MTC: \(6y\left(y-6\right)\)

\(=\dfrac{y\left(y-12\right)}{6y\left(y-6\right)}+\dfrac{6.6}{6y\left(y-6\right)}\)

\(=\dfrac{y\left(y-12\right)+6^2}{6y\left(y-6\right)}\)

\(=\dfrac{y^2-12y+6^2}{6y\left(y-6\right)}\)

\(=\dfrac{\left(y-6\right)^2}{6y\left(y-6\right)}\)

\(=\dfrac{y-6}{6y}\)

27 tháng 11 2017

Bạn Nguyễn Nam làm sai câu b rồi , làm lại cho tất nè

a) \(\dfrac{2}{x+3}+\dfrac{1}{x}=\dfrac{2x+x+3}{x\left(x+3\right)}=\dfrac{3x+3}{x\left(x+3\right)}\)

b) \(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2-4x}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+2x+1-4x}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{2\left(x+1\right)}\)

c) \(\dfrac{y-12}{6y-36}+\dfrac{6}{y^2-6y}=\dfrac{y-12}{6\left(y-6\right)}+\dfrac{6}{y\left(y-6\right)}\)

\(=\dfrac{y^2-12y+36}{6y\left(y-6\right)}=\dfrac{\left(y-6\right)^2}{6y\left(y-6\right)}=\dfrac{y-6}{6y}\)

d) \(\dfrac{6x}{x+3}+\dfrac{3}{2x+6}=\dfrac{6x}{x+3}+\dfrac{3}{2\left(x+3\right)}=\dfrac{12x}{2\left(x+3\right)}\)( sửa đề )