Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-25-4xy+4y^2\)
\(=\left(x^2-4xy+4y^2\right)-25\)
\(=\left(x-2y\right)^2-5^2\)
\(=\left(x-2y-5\right)\left(x-2y+5\right)\)
b) \(x^2-8x+15\)
\(=x^2-3x-5x+15\)
\(=x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(x-5\right)\)
a)\(x^2-25-4xy+4y^2\Leftrightarrow\left(x^2-4xy+4y^2\right)-25\)
\(\Leftrightarrow\left(x-2y\right)^2-5^2\)
\(\Leftrightarrow\left(x-2y-5\right)\left(x-2y+5\right)\)
b)\(x^2-8x+15\Leftrightarrow\left(x-3\right)\left(x-5\right)\)
\(x^3-x^2+2\)
\(=x^3+x^2-2x^2-2x+2x+2\)
\(=x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+2\right)\)
x^3-x^2+2 = (x^3+1)-(x^2-1) = (x+1).(x^2-x+1)-(x-1).(x+1)
= (x+1).(x^2-x+1-x+1)
= (x+1).(x^2-2x+2)
Tk mk nha
\(x^2-2x+\left(x-2\right)^2\)
\(=x^2-2x+x^2-4x+4\)
\(=2x^2-6x+4\)
\(=2.\left(x^2-3x+2\right)\)
\(=2.\left[\left(x^2-x\right)-\left(2x-2\right)\right]\)
\(=2.\left[x.\left(x-1\right)-2.\left(x-1\right)\right]\)
\(=2.\left(x-1\right)\left(x-2\right)\)
\(a,6x^2-9x=3x\left(x-3\right)\)
\(b,x^3-2x^2-3x+6\)
\(=\left(x^3-2x^2\right)-\left(3x-6\right)\)
\(=x^2\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x^2-3\right)\left(x-2\right)\)
\(e,2x\left(x-y\right)-3y\left(x-y\right)\)
\(=\left(2x-3y\right)\left(x-y\right)\)
a) 6x2 - 9x
= 3x (2x - 3)
b) x3 - 2x2 - 3x + 6
= x2(x - 2) - 3 (x - 2)
=(x - 2) (x2 - 3)
c) x2 - 4x + 4 - 9y2
= (x - 2)2 - 9y2
=(x - 2 - 3y)(x - 2 + 3y)
e) 2x(x - y) - 3y(x - y)
= (x - y)(2x - 3y)
xin lỗi mình học ngu nên không biết làm nhìu nha
Bài làm:
Lớp 8 phân tích cái này thì hơi ngô khoai đấy cơ bằng đổi thành:
\(\orbr{\begin{cases}x^2-x-20\\x^2+x-20\end{cases}}\) thì còn dễ phân tích
Mạn phép sửa đề nhé:)
\(\orbr{\begin{cases}x^2-x-20\\x^2+x-20\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x^2+4x\right)-\left(5x+20\right)\\\left(x^2-4x\right)+\left(5x-20\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+4\right)\left(x-5\right)\\\left(x-4\right)\left(x+5\right)\end{cases}}\)
Còn nếu như giữ nguyên đề thì phân tích không ra đâu nhé:)
Nếu giữ nguyên thì ...
\(x^2+x+20\)
\(=\left(x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)+\frac{79}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{79}{4}\ge\frac{79}{4}>0\forall x\)
> 0 thì lấy đâu ra nghiệm :)
(1+x2)2−4x(1−x2)
= \(-\left(1-x^2\right)^2-4x\left(1-x^2\right)\)
đặt \(\left(1-x^2\right)\)= a
ta có :
- a . a - 4x .a
= a ( - a - 4x )
thay a = \(\left(1+x^2\right)\) ta có
\(\left(1+x^2\right)\left(1-x^2-4x\right)\)
phân tích tiếp nhé !
\(x^4+2017x^2+2016x+2017\)
\(=\left(x^4+x^2+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^4+2x^2+1-x^2\right)+2016\left(x^2+x+1\right)\)
\(=\left[\left(x^2+1\right)-x^2\right]+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2017\right)\)
\(x^4+2017x^2+2016x+2017\)
\(=\left(x^4-x\right)+\left(2007x^2+2007x+2007\right)\)
\(=x.\left(x^3-1\right)+2007.\left(x^2+x+1\right)\)
\(=x.\left(x-1\right)\left(x^2+x+1\right)+2007.\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2007\right)\)
x(y - z) + 2(z - y)
= x(y - z) - 2(y - z)
= (x - 2)(y - z)
(2x - 3y)(x - 2) - (x + 3)(3y - 2x)
= (2x - 3y)(x - 2) + (x + 2)(2x - 3y)
= (2x - 3y)(x - 2 + x + 2)
= 2x(2x - 3y)
\(\left(x+2\right)^2+2\left(x^2-4\right)+\left(x-2\right)^2\)
\(=\left(x+2\right)^2+2\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
\(=\left[\left(x+2\right)+\left(x-2\right)\right]^2\)
\(=\left(2x\right)^2=4x^2\)