Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 - y^2 + 12y - 36
= x^2 - (y^2 - 12y +36)
=x^2 - (y-6)^2
= (x-y+6) ( x+y-6)
a/ \(12x^2+5x-12y^2+12y-10xy-3.\)
\(=12x^2+9x-4x-12y^2+6y+6y-18xy+8xy-3.\)
\(=\left(12x^2-18xy+9x\right)-\left(4x-6y+3\right)+\left(8xy-12y^2+6y\right)\)
\(=3x\left(4x-6y+3\right)-\left(4x-6y+3\right)+2y\left(4x-6y+3\right)\)
\(=\left(4x-6y+3\right)\left(3x-1+2y\right)\)
2/ \(2x^2+y^2+3x-2y-3xy+1\)
\(=\left(y^2-2y+1\right)+\left(3x-3xy\right)+2x^2\)
\(=\left(y-1\right)^2+3x\left(1-y\right)+2x^2\)
\(=\left(y-1\right)^2-3x\left(y-1\right)+2x^2\)
bn chép lại đề nha
a/ \(=a^3+1-a^2x-ax\)
\(=\left(a+1\right)\left(a^2-a+1\right)-ax\left(a+1\right)\)
\(=\left(a+1\right)\left(a^2-a+1-ax\right)\)
b/ bn có chép sai đề không? mình sửa lại dấu "-" rồi nha \(-3x^2y\)
\(=12y+36-9x^2-3x^2y=12\left(y+3\right)-3x^2\left(y+3\right)\)
\(=3\left(y+3\right)\left(4-x^2\right)=3\left(y+3\right)\left(2-x\right)\left(2+x\right)\)
Rút gọn hả
Ta có \(\left(x^2+x\right)^2+3.\left(x^2+x\right)+2\)
\(=\left(x^2+x\right).\left[\left(x^2+x\right)+3\right]+2\)
Vậy \(\left(x^2+x\right)^2+3.\left(x^2+x\right)+2=\left(x^2+x\right).\left[\left(x^2+x\right)+3\right]+2\)
a) \(2x^2-50\)
\(=2\left(x^2-25\right)\)
\(=2\left(x-5\right)\left(x+5\right)\)
b) \(x^2z+4xyz+4y^2z\)
\(=z\left(x^2+4xy+4y^2\right)\)
\(=z\left(x+2y\right)^2\)
c) \(x^2-y^2+12y-36\)
\(=x^2-\left(y^2-2\cdot x\cdot6+6^2\right)\)
\(=x^2-\left(y-6\right)^2\)
\(=\left(x-y+6\right)\left(x+y-6\right)\)
d) Đặt \(D=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(D=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(D=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(x^2+3x+1=a\)
\(D=\left(a-1\right)\left(a+1\right)+1\)
\(D=a^2-1^2+1\)
\(D=a^2\)
Thay \(x^2+3x+1=a\)vào D ta có :
\(D=\left(x^2+3x+1\right)^2\)
a: \(2x^2-50=2\left(x^2-5^2\right)\)
\(=2\left(x-5\right)\left(x+5\right)\)
b:\(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)\)
\(=z\left(x+2y\right)^2\)
c:\(x^2-y^2+12y-36=x^2-\left(y^2-12y+36\right)\)
\(=x^2-\left(y-6\right)^2\)
\(=\left(x-y+6\right)\left(x+y-6\right)\)
d:\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=x\left(x+3\right)\left(x+1\right)\left(x+2\right)+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(t=x^2+3x+1\)Ta có:
\(=\left(t-1\right)\left(t+1\right)+1\)
\(=t^2-1+1=t^2\)
\(=\left(x^2+3x+1\right)^2\)
\(\dfrac{x-90}{10}+\dfrac{x-76}{12}=\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)
\(\Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)=\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)\)\(\Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}=\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}-\dfrac{1}{14}-\dfrac{1}{16}-\dfrac{1}{17}\right)=0\)
\(\Leftrightarrow x-100=0\)
\(\Rightarrow x=100\)
vậy \(S=\left\{100\right\}\)
\(=x^2-\left(y-6\right)^2=\left(x-y+6\right)\left(x+y-6\right)\)
\(x^2+12y-y^2-36=x^2-\left(y^2-12y+36\right)=x^2-\left(y-6\right)^2=\left(x-y+6\right)\left(x+y-6\right)\)