K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

Rút gọn hả

Ta có \(\left(x^2+x\right)^2+3.\left(x^2+x\right)+2\)

\(=\left(x^2+x\right).\left[\left(x^2+x\right)+3\right]+2\)

Vậy \(\left(x^2+x\right)^2+3.\left(x^2+x\right)+2=\left(x^2+x\right).\left[\left(x^2+x\right)+3\right]+2\)

22 tháng 8 2018

Đặt x^2+x=t

27 tháng 11 2021

Answer:

\(\left(x^2+x+2\right).\left(x^2+x+3\right)=6\)

Ta có: \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\forall x\)

Ta đặt: \(a=x^2+x+2\left(a>0\right)\)

Lúc này phương trình trở thành:

\(a.\left(a+1\right)=6\)

\(\Rightarrow a^2+a=6\)

\(\Rightarrow a^2+a-6=0\)

\(\Rightarrow a^2+3a-2a-6=0\)

\(\Rightarrow a.\left(a+3\right)-2.\left(a+3\right)=0\)

\(\Rightarrow\left(a-2\right).\left(a+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-2=0\\a+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=2\\a=-3\text{(Loại)}\end{cases}}\)

Với \(a=2\)

\(\Rightarrow x^2+x+2=2\)

\(\Rightarrow x^2+x+2-2=0\)

\(\Rightarrow x^2+x=0\)

\(\Rightarrow x.\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

11 tháng 5 2019

a.(x+2)2-x(x+2)=0

\(\Leftrightarrow\)(x+2)(x-2-x)=0

\(\Leftrightarrow\)(x+2)*2=0

\(\Leftrightarrow\)x+2=0

\(\Leftrightarrow\)x=-2

vay s={-2}

b.\(\frac{2x+7}{3}\)-\(\frac{x-2}{4}\)=2

\(\Leftrightarrow\)\(\frac{4\left(2x+7\right)}{12}\)+\(\frac{-3\left(x-2\right)}{12}\)=\(\frac{24}{12}\)

\(\Leftrightarrow\)8x+28-3x+6=24

\(\Leftrightarrow\)5x=-10

\(\Leftrightarrow\)x=-2

vay s={-2}

c.|x+5|=3x+1

neu x+5\(\ge\)0 thi |x+5|=x+5

\(\Leftrightarrow\)x\(\ge\)-5

ta co phuong trinh

x+5=3x+1

\(\Leftrightarrow\)-2x=-4

\(\Leftrightarrow\)x=2( thoa man dieu kien x\(\ge\)-5)

neu x+5<0 thi |x+5|=5-x

\(\Leftrightarrow\)x<-5

ta co phuong trinh

5-x=3x+1

\(\Leftrightarrow\)-4x=-4

\(\Leftrightarrow\)x=1 (k thoa man dieu kien x<5)

vay s={2}

chuc bn hoc totbanh

11 tháng 5 2019

a, -2

b, -2

c, 2

10 tháng 2 2019

\(x^3-3x+2=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left[x\left(x+1\right)-2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\Leftrightarrow x=1\\x\left(x+1\right)-2=0\end{cases}}\)

\(x\left(x+1\right)-2=0\Leftrightarrow x^2+x-2=0\Leftrightarrow x^2+x+\frac{1}{4}-\frac{9}{4}=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\Leftrightarrow x+\frac{1}{2}=\pm\frac{3}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy.......

10 tháng 2 2019

\(x^3-3x+2=0\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

6 tháng 8 2019

\(\left(x-2\right)\left(x-3\right)=\left(x-2\right)\left(x+1\right)\)

\(\Leftrightarrow x^2-5x+6=x^2-x-2\)

\(\Leftrightarrow-4x+8=0\)

\(\Leftrightarrow x=2\)

Vậy ...

6 tháng 8 2019

(x-2)(x-3)=(x-2)(x+1)

\(x^2-5x+6=x^2-x-2\)

\(x^2-x^2-5x+x=-6-2\)

\(-4x=-8\)

\(x=2\)

\(\text{Vậy x=2}\)

11 tháng 12 2016

A=(x-1)(x+2)(x+3)(x+6)+12

   =[ (x-1)(x+6) ][(x+2)(x+3)] +12

   =( x2+5x-6)( x2+5x+6) +12

    =(x^2+5x)2 - 62 +12

    =(x2+5x)2- 36+ 12

    =(x2+5x)2 - 24

nhận xét ta thấy (x2+5x)2 >=0

nên (x2+5x)2 -24 >= - 24

dấu bằng xảy ra khi và chỉ khi

x2+5x = 0

=> x(x+5) = 0

=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

vậy giá trị nhỏ nhất của A là -24 tại x=0 hoặc x= -5

11 tháng 12 2016

A=(x-1)(x+2)(x+3)(x+6) + 12

A=[(x-1)(x+6)][(x+2)(x+3)] + 12

A=(x2-x+6x-6)(x2+2x+3x+6) + 12

A=(x2+5x-6)(x2+5x+6) + 12

A= (x2+5x)2 - 62 + 12

A= (x2+5x)2 - 36 + 12

A=(x2+5x)2 - 24 \(\ge\)24

GTNN của A là -24 <=> (x2+5x)= 0 <=> x2+5x=0 <=> x(x+5)=0 <=> x=0 hoặc x=-5

9 tháng 9 2021

\(\left(x^4-x^3-3x^2+x+2\right):\left(x^2-1\right)\)

\(=\left[x^2\left(x^2-1\right)-x\left(x^2-1\right)-2\left(x^2-1\right)\right]:\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-x-2\right):\left(x^2-1\right)=x^2-x-2\)

28 tháng 2 2021

\(\frac{1}{x-1}+\frac{2}{x-2}+\frac{3}{x-3}=\frac{6}{x-6}\)

ĐKXĐ : x ≠ 1 ; x ≠ 2 ; x ≠ 3 ; x ≠ 6

pt <=> \(\frac{x^2-5x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{3x^2-9x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{6}{x-6}\)

<=> \(\frac{6x^2-22x+18}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{6}{x-6}\)

=> \(\left(x-6\right)\left(6x^2-22x+18\right)=6\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

(bạn tự khai triển rút gọn nhé)

<=> \(6x^3-58x^2+150x-108=6x^3-36x^2+66x-36\)

<=>\(6x^3-58x^2+150x-108-6x^3+36x^2-66x+36=0\)

<=> \(-22x^2+84x-72=0\)

<=> \(11x^2-42x+36=0\)

(pt này lên lớp 9 mới học nên mình dừng tại đây)

7 tháng 5 2017

\(\dfrac{x-5}{2012}+\dfrac{x-4}{2013}=\dfrac{x-3}{2014}+\dfrac{x-2}{2015}\)

\(\Rightarrow\left(\dfrac{x-5}{2012}-1\right)+\left(\dfrac{x-4}{2013}-1\right)=\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-2}{2015}-1\right)\)

\(\Leftrightarrow\dfrac{x-2017}{2012}+\dfrac{x-2017}{2013}=\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}\)

\(\Leftrightarrow\dfrac{x-2017}{2012}+\dfrac{x-2017}{2013}-\dfrac{x-2017}{2014}-\dfrac{x-2017}{2015}=0\)

\(\Leftrightarrow\left(x-2017\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2014}-\dfrac{1}{2015}\right)=0\)

\(\Rightarrow x-2017=0\Leftrightarrow x=2017\)

Vậy x = 2017

7 tháng 5 2017

cảm ơn nhé

17 tháng 3 2020

đặt \(t=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

phương trình đã cho trở thành : \(t^2+t-12=0\)

phương trình này có nghiệm dương t=3. từ đó suy ra 2 nghiệm đã cho là x=1 , x=2

17 tháng 3 2020

(x2 + x + 1)2 + (x2 + x + 1) - 12 = 0

Đặt x2 + x + 1 = t

<=> t2 + t - 12 = 0

<=> t2 + 4t - 3t - 12 = 0

<=> (t + 4)(t - 3) = 0

<=> (x2 + x + 1 + 4)(x2 + x + 1 - 3) = 0

<=> [(x2 + x + 1/4) + 19/4](x2 + 2x - x - 2) = 0

<=> [(x2 + 1/2)2 + 19/4](x + 2)(x - 1) = 0

<=> (x + 2)(x - 1) = 0

<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy S = {-2; 1}