Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(\left(x^2+x+2\right).\left(x^2+x+3\right)=6\)
Ta có: \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\forall x\)
Ta đặt: \(a=x^2+x+2\left(a>0\right)\)
Lúc này phương trình trở thành:
\(a.\left(a+1\right)=6\)
\(\Rightarrow a^2+a=6\)
\(\Rightarrow a^2+a-6=0\)
\(\Rightarrow a^2+3a-2a-6=0\)
\(\Rightarrow a.\left(a+3\right)-2.\left(a+3\right)=0\)
\(\Rightarrow\left(a-2\right).\left(a+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-2=0\\a+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=2\\a=-3\text{(Loại)}\end{cases}}\)
Với \(a=2\)
\(\Rightarrow x^2+x+2=2\)
\(\Rightarrow x^2+x+2-2=0\)
\(\Rightarrow x^2+x=0\)
\(\Rightarrow x.\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
a.(x+2)2-x(x+2)=0
\(\Leftrightarrow\)(x+2)(x-2-x)=0
\(\Leftrightarrow\)(x+2)*2=0
\(\Leftrightarrow\)x+2=0
\(\Leftrightarrow\)x=-2
vay s={-2}
b.\(\frac{2x+7}{3}\)-\(\frac{x-2}{4}\)=2
\(\Leftrightarrow\)\(\frac{4\left(2x+7\right)}{12}\)+\(\frac{-3\left(x-2\right)}{12}\)=\(\frac{24}{12}\)
\(\Leftrightarrow\)8x+28-3x+6=24
\(\Leftrightarrow\)5x=-10
\(\Leftrightarrow\)x=-2
vay s={-2}
c.|x+5|=3x+1
neu x+5\(\ge\)0 thi |x+5|=x+5
\(\Leftrightarrow\)x\(\ge\)-5
ta co phuong trinh
x+5=3x+1
\(\Leftrightarrow\)-2x=-4
\(\Leftrightarrow\)x=2( thoa man dieu kien x\(\ge\)-5)
neu x+5<0 thi |x+5|=5-x
\(\Leftrightarrow\)x<-5
ta co phuong trinh
5-x=3x+1
\(\Leftrightarrow\)-4x=-4
\(\Leftrightarrow\)x=1 (k thoa man dieu kien x<5)
vay s={2}
chuc bn hoc tot
\(x^3-3x+2=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left[x\left(x+1\right)-2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\Leftrightarrow x=1\\x\left(x+1\right)-2=0\end{cases}}\)
\(x\left(x+1\right)-2=0\Leftrightarrow x^2+x-2=0\Leftrightarrow x^2+x+\frac{1}{4}-\frac{9}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\Leftrightarrow x+\frac{1}{2}=\pm\frac{3}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy.......
\(x^3-3x+2=0\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
\(\left(x-2\right)\left(x-3\right)=\left(x-2\right)\left(x+1\right)\)
\(\Leftrightarrow x^2-5x+6=x^2-x-2\)
\(\Leftrightarrow-4x+8=0\)
\(\Leftrightarrow x=2\)
Vậy ...
A=(x-1)(x+2)(x+3)(x+6)+12
=[ (x-1)(x+6) ][(x+2)(x+3)] +12
=( x2+5x-6)( x2+5x+6) +12
=(x^2+5x)2 - 62 +12
=(x2+5x)2- 36+ 12
=(x2+5x)2 - 24
nhận xét ta thấy (x2+5x)2 >=0
nên (x2+5x)2 -24 >= - 24
dấu bằng xảy ra khi và chỉ khi
x2+5x = 0
=> x(x+5) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
vậy giá trị nhỏ nhất của A là -24 tại x=0 hoặc x= -5
A=(x-1)(x+2)(x+3)(x+6) + 12
A=[(x-1)(x+6)][(x+2)(x+3)] + 12
A=(x2-x+6x-6)(x2+2x+3x+6) + 12
A=(x2+5x-6)(x2+5x+6) + 12
A= (x2+5x)2 - 62 + 12
A= (x2+5x)2 - 36 + 12
A=(x2+5x)2 - 24 \(\ge\)24
GTNN của A là -24 <=> (x2+5x)2 = 0 <=> x2+5x=0 <=> x(x+5)=0 <=> x=0 hoặc x=-5
\(\left(x^4-x^3-3x^2+x+2\right):\left(x^2-1\right)\)
\(=\left[x^2\left(x^2-1\right)-x\left(x^2-1\right)-2\left(x^2-1\right)\right]:\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-x-2\right):\left(x^2-1\right)=x^2-x-2\)
\(\frac{1}{x-1}+\frac{2}{x-2}+\frac{3}{x-3}=\frac{6}{x-6}\)
ĐKXĐ : x ≠ 1 ; x ≠ 2 ; x ≠ 3 ; x ≠ 6
pt <=> \(\frac{x^2-5x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{3x^2-9x+6}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{6}{x-6}\)
<=> \(\frac{6x^2-22x+18}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{6}{x-6}\)
=> \(\left(x-6\right)\left(6x^2-22x+18\right)=6\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
(bạn tự khai triển rút gọn nhé)
<=> \(6x^3-58x^2+150x-108=6x^3-36x^2+66x-36\)
<=>\(6x^3-58x^2+150x-108-6x^3+36x^2-66x+36=0\)
<=> \(-22x^2+84x-72=0\)
<=> \(11x^2-42x+36=0\)
(pt này lên lớp 9 mới học nên mình dừng tại đây)
\(\dfrac{x-5}{2012}+\dfrac{x-4}{2013}=\dfrac{x-3}{2014}+\dfrac{x-2}{2015}\)
\(\Rightarrow\left(\dfrac{x-5}{2012}-1\right)+\left(\dfrac{x-4}{2013}-1\right)=\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-2}{2015}-1\right)\)
\(\Leftrightarrow\dfrac{x-2017}{2012}+\dfrac{x-2017}{2013}=\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}\)
\(\Leftrightarrow\dfrac{x-2017}{2012}+\dfrac{x-2017}{2013}-\dfrac{x-2017}{2014}-\dfrac{x-2017}{2015}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2014}-\dfrac{1}{2015}\right)=0\)
\(\Rightarrow x-2017=0\Leftrightarrow x=2017\)
Vậy x = 2017
đặt \(t=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
phương trình đã cho trở thành : \(t^2+t-12=0\)
phương trình này có nghiệm dương t=3. từ đó suy ra 2 nghiệm đã cho là x=1 , x=2
(x2 + x + 1)2 + (x2 + x + 1) - 12 = 0
Đặt x2 + x + 1 = t
<=> t2 + t - 12 = 0
<=> t2 + 4t - 3t - 12 = 0
<=> (t + 4)(t - 3) = 0
<=> (x2 + x + 1 + 4)(x2 + x + 1 - 3) = 0
<=> [(x2 + x + 1/4) + 19/4](x2 + 2x - x - 2) = 0
<=> [(x2 + 1/2)2 + 19/4](x + 2)(x - 1) = 0
<=> (x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Vậy S = {-2; 1}
Rút gọn hả
Ta có \(\left(x^2+x\right)^2+3.\left(x^2+x\right)+2\)
\(=\left(x^2+x\right).\left[\left(x^2+x\right)+3\right]+2\)
Vậy \(\left(x^2+x\right)^2+3.\left(x^2+x\right)+2=\left(x^2+x\right).\left[\left(x^2+x\right)+3\right]+2\)
Đặt x^2+x=t