K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2018

À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)

\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)

\(\Leftrightarrow8a^2+8a-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................

17 tháng 2 2018

Tử và mẫu giống nhau mà

25 tháng 9 2018

\(x^{2015}+y^{2015}=x^{2016}+y^{2016}=x^{2017}+y^{2017}\)

\(\Rightarrow x=y=1\) hoặc \(x=y=0\)

Với \(x=y=1\)

\(S=2018\left(1^{2018}+1^{2018}\right)\)

\(S=2018.2\)

\(S=4036\)

Với \(x=y=0\)

\(S=2018\left(0^{2018}+0^{2018}\right)\)

\(S=0\)

26 tháng 3 2020

Ta có \(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}.x=\frac{2018}{2019}.x\)

<=>\(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}x-\frac{2018}{2019}x=0\)

<=>x\(\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\right)=0\)

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\) không thể bằng 0

Vậy x=0

Ta có 1 nghiệm thỏa mãn S=\(\left\{0\right\}\)

AH
Akai Haruma
Giáo viên
25 tháng 9 2018

Lời giải:

Từ điều kiện đề bài suy ra:

\(\left\{\begin{matrix} x^{2016}+y^{2016}-x^{2017}-y^{2017}=0\\ x^{2017}+y^{2017}-x^{2018}-y^{2018}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x^{2016}(1-x)+y^{2016}(1-y)=0\\ x^{2017}(1-x)+y^{2017}(1-y)=0\end{matrix}\right.\)

\(\Rightarrow x^{2016}(1-x)(1-x)+y^{2016}(1-y)(1-y)=0\) (trử theo vế)

\(\Leftrightarrow x^{2016}(1-x)^2+y^{2016}(1-y)^2=0\)

Dễ thấy \(x^{2016}(1-x)^2; y^{2016}(1-y)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\(x^{2016}(1-x)^2=y^{2016}(1-y)^2=0\)

\(\Rightarrow (x,y)=(0,1), (0,0), (1,1)\) và hoán vị của nó

Thử lại vào đk ban đầu thấy thỏa mãn

Do đó: \(A=x^{2019}+y^{2019}\in\left\{0; 1;2\right\}\)

25 tháng 9 2018

\(x^{2016}+y^{2016}=x^{2017}+y^{2017}=x^{2018}+y^{2018}\left(x,y\ge0\right)\)

\(\Rightarrow x=y=1\)

\(\Rightarrow A=1^{2019}+1^{2019}\)

\(\Rightarrow A=2\)

10 tháng 3 2018

Sửa đề: \(\dfrac{x-4}{2019}+\dfrac{x-3}{2018}=\dfrac{x-2}{2017}+\dfrac{x-1}{2016}\)

\(\Leftrightarrow\dfrac{x-4}{2019}+1+\dfrac{x-3}{2018}+1=\dfrac{x-2}{2017}+1+\dfrac{x-1}{2016}+1\)

\(\Leftrightarrow\dfrac{x+2015}{2019}+\dfrac{x+2015}{2018}=\dfrac{x+2015}{2017}+\dfrac{x+2015}{2016}\)

\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)

\(\Leftrightarrow x=-2015\)\(\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)\ne0\)

20 tháng 3 2018

đoạn cuối cùng mk chưa hiểu lắm leuleu

26 tháng 12 2018

300m2

9 tháng 3 2019

ta có x^2+y^2-6x+18+6y=0

(x-3)^2+(y+3)^2=0

x=3 và y=-3 thay vào biểu thức A bạn sẽ tính dc kq

3 tháng 12 2017

Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)

Vậy A<B