Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - xy + 3x - y = 5
\(\Leftrightarrow\) x(x - y) + x - y + 2x = 5
\(\Leftrightarrow\) (x - y)(x + 1) + 2x + 2 = 7
\(\Leftrightarrow\) (x - y)(x + 1) + 2(x + 1) = 7
\(\Leftrightarrow\) (x - y + 2)(x + 1) = 7
Vì x, y \(\in\) Z nên (x - y + 2)(x + 1) \(\in\) Z
Xét các TH:
TH1: \(\left\{{}\begin{matrix}x-y+2=7\\x+1=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=7\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\) (TM)
TH2: \(\left\{{}\begin{matrix}x-y+2=-7\\x+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2-y+2=-7\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\) (TM)
TH3: \(\left\{{}\begin{matrix}x-y+2=1\\x+1=7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}6-y+2=1\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\) (TM)
TH4: \(\left\{{}\begin{matrix}x-y+2=-1\\x+1=-7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-8-y+2=-1\\x=-8\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-8\\y=-5\end{matrix}\right.\) (TM)
Vậy ...
Chúc bn học tốt!
\(\frac{x+y}{x^2+xy+y^2}=\frac{5}{19}\Leftrightarrow19\left(x+y\right)=5\left(x^2+xy+y^2\right)\) (*)
từ pt (*) ta thấy \(19\left(x+y\right)⋮5\) mà (19,5)=1 \(\Rightarrow x+y⋮5\Rightarrow x+y=5k\left(k\in Z\right)\)
Thay x+y=5k vào (*) ta được: \(x^2+xy+y^2=19k\) (1)
Lại có: \(x+y=5k\Leftrightarrow x^2+2xy+y^2=25k^2\) (2)
Lấy (2) - (1) ta có: \(xy=25k^2-19k\)
Xét \(\left(x+y\right)^2-4xy=\left(x-y\right)^2\ge0\Leftrightarrow25k^2-4\left(25k^2-19k\right)\ge0\Leftrightarrow75k^2-76k\le0\)
\(\Leftrightarrow0\le k\le\frac{76}{75}\Rightarrow k\in\left\{0;1\right\}\)
-Nếu k=0 thì \(\hept{\begin{cases}x+y=0\\xy=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
-Nếu k=1 thì \(\hept{\begin{cases}x+y=5\\xy=6\end{cases}\Leftrightarrow\left(x;y\right)=\left(2;3\right);\left(3;2\right)}\)
Tìm cặp số nguyên (x;y) thỏa mãn x+y=xy
\(x+y=xy\)
\(\Leftrightarrow x+y-xy=0\)
\(\Leftrightarrow x-xy+y-1=-1\)
\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=-1\)
\(\Leftrightarrow\left(1-y\right)\left(x-1\right)=-1\)
Từ trên ta xét 2 TH : 1 là 1 - y = 1 và x - 1 = -1 | 2 là 1 - y = -1 và x - 1 = 1
TH1:\(x-1=-1\)
\(\Rightarrow x=0\)
\(1-y=1\)
\(\Rightarrow y=0\)
TH2: \(x-1=1\)
\(\Rightarrow x=2\)
\(1-y=1\)
\(\Rightarrow y=2\)
=> 2 cặp số nguyên (x;y) thỏa mãn x+y=xy là (0;0) và (2;2)
\(2xy^2+x+y-1=x^2+2y^2+xy\\\Leftrightarrow 2xy^2+x+y-1-x^2-2y^2-xy=0\\\Leftrightarrow(2xy^2-2y^2)-(xy-y)-(x^2-x)=1\\\Leftrightarrow2y^2(x-1)-y(x-1)-x(x-1)=1\\\Leftrightarrow(x-1)(2y^2-y-x)=1\)
Vì \(x,y\) nguyên \(\Rightarrow x-1;2y^2-y-x\) có giá trị nguyên
Mà: \(\left(x-1\right)\left(2y^2-y-x\right)=1\)
Do đó ta có các trường hợp xảy ra là:
\(+,\left\{{}\begin{matrix}x-1=1\\2y^2-y-x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y^2-y-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left(2y-3\right)\left(y+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y\in\left\{\dfrac{3}{2};-1\right\}\end{matrix}\right.\)
Mà \(x,y\) nguyên nên: \(x=2;y=-1\)
\(+,\left\{{}\begin{matrix}x-1=-1\\2y^2-y-x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y^2-y+1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2\left(y-\dfrac{1}{4}\right)^2+\dfrac{7}{8}=0\left(\text{vô lí}\right)\end{matrix}\right.\)
Vậy \(x=2;y=-1\) là các giá trị cần tìm.
\(\text{#}Toru\)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)