Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)
\(=2x^3+16x^2-5x\)
\(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)
\(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
\(x^2+4y^2-2x+4y+2=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
a)\(x^2+4x+4-y^2=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)
b)hình như sai đề
c)\(x^3+2x^2y+xy^2=x^3+x^2y+x^2y+xy^2=\left(x^2+xy\right)\left(x+y\right)=x\left(x+y\right)^2\)
d)\(5x+5y-x^2-2xy-y^2=5\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(5-x-y\right)\)
e)\(x^5-x^4+x^3-x^2=x^4\left(x-1\right)+x^2\left(x-1\right)=\left(x^4+x^2\right)\left(x-1\right)\)