K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

pbân tích đa thức thành nhân tử hả

9 tháng 8 2016

\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left[2\times\left(x+2\right)\right]^2=9\)

\(\left[\left(2x+1\right)-2\times\left(x+2\right)\right]\left[\left(2x+1\right)+2\times\left(x+2\right)\right]=9\)

\(\left(2x+1-2x-4\right)\left(2x+1+2x+4\right)=9\)

\(\left(-3\right)\left(4x+5\right)=9\)

\(4x+5=\frac{9}{-3}\)

\(4x+5=-3\)

\(4x=-3-5\)

\(4x=-8\)

\(x=-\frac{8}{4}\)

\(x=-2\)

***

\(3\left(x-1\right)^2-3x\left(x-5\right)=21\)

\(3\times\left[\left(x-1\right)^2-x\left(x-5\right)\right]=21\)

\(x^2-2x+1-x^2+5x=\frac{21}{3}\)

\(3x+1=7\)

\(3x=7-1\)

\(3x=6\)

\(x=\frac{6}{3}\)

\(x=2\)

***

\(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\left(x^2+2\times x\times3+3^2\right)-\left(x^2+8x-4x-32\right)=1\)

\(x^2+6x+9-x^2-8x+4x+32=1\)

\(2x=1-9-32\)

\(2x=-40\)

\(x=-\frac{40}{2}\)

\(x=-20\)

15 tháng 8 2021

Áp dụng BĐT Cauchy schwarz dạng Engel 

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{1}{3}\)

Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{3}\)