K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2021

Ta có : \(x^2-4x+4+y^2=0\)

\(\Leftrightarrow\left(x-2\right)^2+y^2=0\)

Thấy : \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\y^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^2+y^2\ge0\)

- Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

29 tháng 9 2019

Xin lỗi mk viết câu hơi sát một chút ak.

AH
Akai Haruma
Giáo viên
22 tháng 8 2020

Lời giải:

a) $(2x+3)(x-2)-(x^2-4x+4)=0$

$\Leftrightarrow (2x+3)(x-2)-(x-2)^2=0$

$\Leftrightarrow (x-2)[(2x+3)-(x-2)]=0$

$\Leftrightarrow (x-2)(x+1)=0$

$\Rightarrow x-2=0$ hoặc $x+1=0$

$\Rightarrow x=2$ hoặc $x=-1$

b)

$9x^2-(x^2-4x+4)=0$

$\Leftrightarrow (3x)^2-(x-2)^2=0$

$\Leftrightarrow (3x-x+2)(3x+x-2)=0$

$\Leftrightarrow (2x+2)(4x-2)=0$

$\Leftrightarrow (x+1)(2x-1)=0$

$\Rightarrow x+1=0$ hoặc $2x-1=0$

$\Rightarrow x=-1$ hoặc $x=\frac{1}{2}$

1) Ta có: \(\left(x^2-4x+4\right)\left(x^2+4x+4\right)-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2\cdot\left(x+2\right)^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\right]^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4-7x-4\right)\left(x^2-4+7x+4\right)=0\)

\(\Leftrightarrow\left(x^2-7x-8\right)\left(x^2+7x\right)=0\)

\(\Leftrightarrow x\left(x+7\right)\left(x^2-8x+x-8\right)=0\)

\(\Leftrightarrow x\left(x+7\right)\left[x\left(x-8\right)+\left(x-8\right)\right]=0\)

\(\Leftrightarrow x\left(x+7\right)\left(x-8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\\x-8=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\\x=8\\x=-1\end{matrix}\right.\)

Vậy: S={0;-7;8;-1}

2) Ta có: \(x^3-8x^2+17x-10=0\)

\(\Leftrightarrow x^3-2x^2-6x^2+12x+5x-10=0\)

\(\Leftrightarrow x^2\left(x-2\right)-6x\left(x-2\right)+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-6x+5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-x-5x+5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\)

Vậy: S={2;1;5}

3) Ta có: \(2x^3-5x^2-x+6=0\)

\(\Leftrightarrow2x^3-4x^2-x^2+2x-3x+6=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-3\right)+\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\2x=3\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{3}{2}\\x=-1\end{matrix}\right.\)

Vậy: \(S=\left\{2;\frac{3}{2};-1\right\}\)

4) Ta có: \(4x^4-4x^2-3=0\)

\(\Leftrightarrow4x^4-6x^2+2x^2-3=0\)

\(\Leftrightarrow2x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\)

\(\Leftrightarrow\left(2x^2-3\right)\left(2x^2+1\right)=0\)

\(2x^2+1>0\forall x\in R\)

nên \(2x^2-3=0\)

\(\Leftrightarrow2x^2=3\)

\(\Leftrightarrow x^2=\frac{3}{2}\)

hay \(x=\pm\sqrt{\frac{3}{2}}\)

Vậy: \(S=\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}}\right\}\)

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

16 tháng 7 2018

a)  \(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

b)  \(5x^2-5xy-3x+3y\)

\(=5x\left(x-y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(5x-3\right)\)

c)  \(x^2-2x-4y^2+1\)

\(=\left(x-1\right)^2-4y^2\)

\(=\left(x-2y-1\right)\left(x+2y-1\right)\)

1 tháng 8 2018

3)

e)

b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

1 tháng 8 2018

3)

b)-x^2+4x-5=-(x^2-4x+5)

=-(x^2-2.2x+2^2)-1

=-(x+2)^2-1

vì -(x+2) nhỏ hơn hoặc bằng 0 \(\forall x\)

=>-(x+2)^2-1<1 \(\forall\)x

30 tháng 10 2019

Câu 1 : Tìm x :

1. \(A=x^2+4x-2\)

\(A=x^2+2.x.2+2^2-2^2-2\)

\(A=\left(x^2+4x+2^2\right)-4-2\)

\(A=\left(x+2\right)^2-6\)

\(\left(x+2\right)^2-6\ge-6\)

MIn A= -6 khi \(\left(x+2\right)^2=0\)

=> \(x+2=0hayx=-2\)

Vậy x=2

những câu tiếp theo làm tg tự như thế nhé

30 tháng 10 2019

Câu 1:

a) Ta có: \(A=x^2+4x-2\)

\(=x^2+4x+4-6\)

\(=\left(x+2\right)^2-6\)

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2-6\ge-6\forall x\)

Dấu '=' xảy ra khi

\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: x=-2

b) Ta có: \(B=2x^2-4x+3\)

\(=2\left(x^2-2x+\frac{3}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot1+1+\frac{1}{2}\right)\)

\(=2\left[\left(x^2-2x\cdot1+1\right)+\frac{1}{2}\right]\)

\(=2\left[\left(x-1\right)^2+\frac{1}{2}\right]\)

\(=2\left(x-1\right)^2+1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi

\(2\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: x=1

c) Ta có: \(C=x^2+y^2-4x+2y+5\)

\(=x^2-4x+4+y^2+2y+1\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)

\(=\left(x-2\right)^2+\left(y+1\right)^2\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\left(y+1\right)^2\ge0\forall y\)

Do đó: \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy: x=2 và y=-1

Câu 2:

a) Ta có: \(A=-x^2+6x+5\)

\(=-\left(x^2-6x-5\right)\)

\(=-\left(x^2-6x+9-14\right)\)

\(=-\left[\left(x^2-6x+9\right)-14\right]\)

\(=-\left[\left(x-3\right)^2-14\right]\)

\(=-\left(x-3\right)^2+14\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2+14\le14\forall x\)

Dấu '=' xảy ra khi

\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTLN của đa thức \(A=-x^2+6x+5\) là 14 khi x=3

b) Ta có: \(B=-4x^2-9y^2-4x+6y+3\)

\(=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2-5\right]\)

\(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(2x+1\right)^2\le0\forall x\)(1)

Ta có: \(\left(3y-1\right)^2\ge0\forall y\)

\(\Rightarrow-\left(3y-1\right)^2\le0\forall y\)(2)

Từ (1) và (2) suy ra

\(-\left(2x+1\right)^2-\left(3y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left(2x+1\right)^2-\left(3y-1\right)^2+5\le5\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}-\left(2x+1\right)^2=0\\-\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

Vậy: GTLN của đa thức \(B=-4x^2-9y^2-4x+6y+3\) là 5 khi và chỉ khi \(x=\frac{-1}{2}\)\(y=\frac{1}{3}\)

Câu 3:

a) Ta có: \(x^2+y^2-2x+4y+5=0\)

\(\Rightarrow x^2-2x+1+y^2+4y+4=0\)

\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy: x=1 và y=-2

b) Ta có: \(5x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow x^2+4x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow\left(4x^2+12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Rightarrow\left(2x+3y\right)^2+\left(x-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+3y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot3+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)

Vậy: x=3 và y=-2

6 tháng 10 2019

Hơi mờ một tí, bạn cố gắng đọc nhá haha

13 tháng 6 2015

a)x2+y2-4x+4=0

<=>(x-2)2+y2=0

Do \(\left(x-2\right)^2\ge0;y^2\ge0\)

=>(x-2)2=0 và y2=0

<=>x=2 và y=0

b)2x2+y2-2xy+2x-4y+5=0

<=>(x2-2xy+y2-4y+4x+4)+(x2-2x+1)=0

<=>(x-y+2)2+(x-1)2=0

Do \(\left(x-y+2\right)^2\ge0;\left(x-1\right)^2\ge0\)

=>(x-y+2)2=0 và (x-1)2=0

<=>x=1 và y=3