Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Câu 1
a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)
b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)
b) Ta có: \(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy: \(B_{min}=1\) khi (x,y)=(-1;2)
c) Ta có: \(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(C_{min}=-7\) khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(A=2x^2+x=2\left(x^2+\dfrac{1}{2}x\right)=2\left(x^2+2.\dfrac{1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)\)
\(=2\left[\left(x+\dfrac{1}{4}\right)^2-\dfrac{1}{16}\right]\ge-\dfrac{1}{8}\) dấu"=' xảy ra<=>x=\(-\dfrac{1}{4}\)
\(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1=\left(x+1\right)^2+\left(y-2\right)^2+1\)
\(\ge1\) dấu"=" xảy ra<=>x=-1;y=2
\(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)
dấu"=" xảy ra<=>x=\(-\dfrac{1}{2},y=\dfrac{1}{3}\)
\(D=\left(2+x\right)\left(x+4\right)-\left(x-1\right)\left(x+3\right)^2\)
=\(x^2+6x+8-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2-1-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2\left(2-x\right)-1\ge-1\)
dấu"=" xảy ra\(< =>\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Bài 12:
1) A = x2 - 6x + 11
= (x2 - 6x + 9) + 2
= (x - 3)2 + 2
Ta có: (x - 3)2 ≥ 0 ∀ x
Dấu ''='' xảy ra khi x - 3 = 0 ⇔ x = 3
Do đó: (x - 3)2 + 2 ≥ 2
Hay A ≥ 2
Dấu ''='' xảy ra khi x = 3
Vậy Min A = 2 tại x = 3
2) B = x2 - 20x + 101
= (x2 - 20x + 100) + 1
= (x - 10)2 + 1
Ta có: (x - 10)2 ≥ 0 ∀ x
Dấu ''='' xảy ra khi x - 10 = 0 ⇔ x = 10
Do đó: (x - 10)2 + 1 ≥ 1
Hay B ≥ 1
Dấu ''='' xảy ra khi x = 10
Vậy Min B = 1 tại x = 10
Tải trên điện thoaaij về phần mềm PhotoMath thì bạn sẽ có đáp án và bài giải bài thực hiện phép tính này. Nếu thắc mắc về cánh sử dụng thì seach mạng.
Bài 13:
1: \(A=-x^2+4x+3\)
\(=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7\le7\)
Dấu '=' xảy ra khi x=2
2: \(B=-\left(x^2-6x+11\right)\)
\(=-\left(x-3\right)^2-2\le-2\)
Dấu '=' xảy ra khi x=3
10: \(x\left(x-y\right)+x^2-y^2\)
\(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+x+y\right)\)
\(=\left(x-y\right)\left(2x+y\right)\)
11: \(x^2-y^2+10x-10y\)
\(=\left(x^2-y^2\right)+\left(10x-10y\right)\)
\(=\left(x-y\right)\left(x+y\right)+10\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+10\right)\)
12: \(x^2-y^2+20x+20y\)
\(=\left(x^2-y^2\right)+\left(20x+20y\right)\)
\(=\left(x-y\right)\left(x+y\right)+20\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+20\right)\)
13: \(4x^2-9y^2-4x-6y\)
\(=\left(4x^2-9y^2\right)-\left(4x+6y\right)\)
\(=\left(2x-3y\right)\left(2x+3y\right)-2\left(2x+3y\right)\)
\(=\left(2x+3y\right)\left(2x-3y-2\right)\)
14: \(x^3-y^3+7x^2-7y^2\)
\(=\left(x^3-y^3\right)+\left(7x^2-7y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\cdot\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2+7x+7y\right)\)
15: \(x^3+4x-\left(y^3+4y\right)\)
\(=x^3-y^3+4x-4y\)
\(=\left(x^3-y^3\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2+4\right)\)
16: \(x^3+y^3+2x+2y\)
\(=\left(x^3+y^3\right)+\left(2x+2y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+2\right)\)
17: \(x^3-y^3-2x^2y+2xy^2\)
\(=\left(x^3-y^3\right)-\left(2x^2y-2xy^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2-2xy\right)\)
\(=\left(x-y\right)\left(x^2-xy+y^2\right)\)
18: \(x^3-4x^2+4x-xy^2\)
\(=x\left(x^2-4x+4-y^2\right)\)
\(=x\left[\left(x^2-4x+4\right)-y^2\right]\)
\(=x\left[\left(x-2\right)^2-y^2\right]\)
\(=x\left(x-2-y\right)\left(x-2+y\right)\)
Câu 1 : Tìm x :
1. \(A=x^2+4x-2\)
\(A=x^2+2.x.2+2^2-2^2-2\)
\(A=\left(x^2+4x+2^2\right)-4-2\)
\(A=\left(x+2\right)^2-6\)
\(\left(x+2\right)^2-6\ge-6\)
MIn A= -6 khi \(\left(x+2\right)^2=0\)
=> \(x+2=0hayx=-2\)
Vậy x=2
những câu tiếp theo làm tg tự như thế nhé
Câu 1:
a) Ta có: \(A=x^2+4x-2\)
\(=x^2+4x+4-6\)
\(=\left(x+2\right)^2-6\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2-6\ge-6\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: x=-2
b) Ta có: \(B=2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2\cdot x\cdot1+1+\frac{1}{2}\right)\)
\(=2\left[\left(x^2-2x\cdot1+1\right)+\frac{1}{2}\right]\)
\(=2\left[\left(x-1\right)^2+\frac{1}{2}\right]\)
\(=2\left(x-1\right)^2+1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: x=1
c) Ta có: \(C=x^2+y^2-4x+2y+5\)
\(=x^2-4x+4+y^2+2y+1\)
\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)
\(=\left(x-2\right)^2+\left(y+1\right)^2\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+1\right)^2\ge0\forall y\)
Do đó: \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy: x=2 và y=-1
Câu 2:
a) Ta có: \(A=-x^2+6x+5\)
\(=-\left(x^2-6x-5\right)\)
\(=-\left(x^2-6x+9-14\right)\)
\(=-\left[\left(x^2-6x+9\right)-14\right]\)
\(=-\left[\left(x-3\right)^2-14\right]\)
\(=-\left(x-3\right)^2+14\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2+14\le14\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(A=-x^2+6x+5\) là 14 khi x=3
b) Ta có: \(B=-4x^2-9y^2-4x+6y+3\)
\(=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2-5\right]\)
\(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(2x+1\right)^2\le0\forall x\)(1)
Ta có: \(\left(3y-1\right)^2\ge0\forall y\)
\(\Rightarrow-\left(3y-1\right)^2\le0\forall y\)(2)
Từ (1) và (2) suy ra
\(-\left(2x+1\right)^2-\left(3y-1\right)^2\le0\forall x,y\)
\(\Rightarrow-\left(2x+1\right)^2-\left(3y-1\right)^2+5\le5\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}-\left(2x+1\right)^2=0\\-\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Vậy: GTLN của đa thức \(B=-4x^2-9y^2-4x+6y+3\) là 5 khi và chỉ khi \(x=\frac{-1}{2}\) và \(y=\frac{1}{3}\)
Câu 3:
a) Ta có: \(x^2+y^2-2x+4y+5=0\)
\(\Rightarrow x^2-2x+1+y^2+4y+4=0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy: x=1 và y=-2
b) Ta có: \(5x^2+9y^2-12xy-6x+9=0\)
\(\Rightarrow x^2+4x^2+9y^2-12xy-6x+9=0\)
\(\Rightarrow\left(4x^2+12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Rightarrow\left(2x+3y\right)^2+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+3y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot3+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Vậy: x=3 và y=-2