K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6

Ta có:

\(x^2-y^2-4x-25=0\\\Leftrightarrow (x^2-4x+4)-y^2-29=0\\\Leftrightarrow (x-2)^2-y^2=29\\\Leftrightarrow (x-y-2)(x+y-2)=29\)

Vì x, y nguyên nên \(x-y-2;x+y-2\) có giá trị nguyên

\(\Rightarrow x-y-2;x+y-2\) là các ước của 29

Ta có bảng sau:

  x - y - 2  1  29   -1  -29 
 x + y - 2  29   1 -29  -1
       x 17 17 -13  -13
       y 14-14 -14 14

Vì các giá trị tìm được đều thoả mãn x, y nguyên nên \((x;y)=(17;14);(17;-14);(-13;-14);(-13;14)\)

$Toru$

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
$x^2+4x-y^2=0$

$\Leftrightarrow (x+2)^2-4-y^2=0$

$\Leftrightarrow (x+2)^2-y^2=4$

$\Leftrightarrow (x+2-y)(x+2+y)=4=2.2=(-2)(-2)$

Đến đây là dạng pt tích cơ bản rồi, bạn chỉ cần xét các trường hợp cụ thể để tìm ra $x,y$ thôi.

15 tháng 3 2020

mình làm cho câu dưới nha

\(x+y+xy+2=x^2+y^2\)

\(=>x^2+y^2-x-y-xy=2\)

=>\(2x^2+2y^2-2x-2y-2xy=4\\\)( chỗ này nhân mõi zế zs 2 á)

=>\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=4\)

ta lại có\(4=0+1+3=tgtựra\)

mình nghĩ thế

Có sai không bạn

22 tháng 10 2017

x² + 2xy + 2y² - 5x - 5y = -6

<=> x² + 2xy + y² - 5(x + y) + y² = -6

<=> (x + y)² - 5(x + y) = - 6 - y²

<=> (x + y)² - 5(x + y) + 25/4 = 25/4 - 6 - y²

<=> (x + y - 5/2)² = (1 - 4y²)/4

<=> (2x + 2y - 5)² = 1 - 4y²

<=> (2x + 2y - 5)² + 4y² = 1 (*)

Từ (*) ta thấy nếu x, y là các số thực thì có vô số cặp (x, y) thỏa.

có thể đề ghi thiếu, ở đây tôi tìm các cặp (x, y) nguyên

*nếu y ≠ 0 thì 4y² ≥ 4, không thỏa (*)

*Vậy y = 0, thay vào (*):

(2x - 5)² = 1

+2x - 5 = -1 => x = 2

+2x - 5 = 1 => x = 3

Vậy có hai cặp nguyên (x, y) thỏa là: (2, 0) và (3, 0)

7 tháng 6 2015

       x2+y2+z2-yz-4x-3y+7=0
<=> x- 4x + 4 +\(\frac{y^2}{4}\)- 2\(\frac{y}{2}\)z + z2 + \(\frac{3}{4}\)y2 - 3y+ 3 = 0
<=> (x - 2)+ (\(\frac{y}{2}\)- z)2 + 3(\(\frac{y}{2}\)- 1)2 =0
Vậy x,y,z luôn nguyên

sai chỗ nào mong các bạn chỉnh sửa giúp mình ạk!!!!! ^.,..* O.o