Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm
- Với \(x\le\frac{1}{4}\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)
\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)
2.
- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)
\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)
- Với \(x< -\frac{1}{4}\)
\(\Leftrightarrow-4x-1=x^2+2x-4\)
\(\Leftrightarrow x^2+6x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)
3.
- Với \(x\ge\frac{5}{3}\)
\(\Leftrightarrow3x-5=2x^2+x-3\)
\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)
- Với \(x< \frac{5}{3}\)
\(\Leftrightarrow5-3x=2x^2+x-3\)
\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)
4. Do hai vế của pt đều không âm, bình phương 2 vế:
\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)
\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)
\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)
(x2-3x+2)(x2-9x+20)=4
=>(x-1)(x-2)(x-4)(x-5)=4
Đặt x-3=a , phương trình tương đương:
(a+2)(a+1)(a-1)(a-2)=4
=>(a2-1)(a2-4)=4
=>a4-5a2=0
Tự giải nốt nhé!
a)Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3+1=2x\left(1\right)\)
Phương trình trở thành: \(x^3+1=2a\left(2\right)\)
Trừ theo vế (1) và (2):
a3-x3=2(x-a)<=>(a-x)(a2+ax+x2+2)=0<=>a=x
\(\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1-\sqrt{5}}{2}\\x=\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)Vậy phương trình có tập nghiệm S=\(\left\{1;\frac{-1+\sqrt{5}}{2};\frac{-1-\sqrt{5}}{2}\right\}\)
b)ĐKXĐ:\(x\in R\)
pt\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1\le0\\\left(x^2-3x+1\right)^2=\frac{1}{3}\left(x^4+4x^2+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3-\sqrt{5}}{2}\le x\le\frac{3+\sqrt{5}}{2}\\2x^4-18x^3+29x^2-18x+2=0\left(1\right)\end{matrix}\right.\)
Xét x=0 ko là nghiệm của pt(loại)
x khác 0.Khi đó ta chia cả hai vế của (1) cho x2 ta có:\(2x^2-18x+29-\frac{18}{x}+\frac{2}{x^2}=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-4-18\left(x+\frac{1}{x}\right)+29=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-18\left(x+\frac{1}{x}\right)+25=0\)
Khi đó ta sẽ tìm được các nghiệm của pt
2.
\(DK:\hept{\begin{cases}x\ge-\frac{1}{5}\\x\ne0\end{cases}}\)
PT
\(\Leftrightarrow6+3\sqrt{5x+1}\left(\sqrt{5x+1}-1\right)=14\left(\sqrt{5x+1}-1\right)\)
\(\Leftrightarrow15x+23-17\sqrt{5x+1}=0\)
\(\Leftrightarrow\left(68-17\sqrt{5x+1}\right)+\left(15x-45\right)=0\)
\(\Leftrightarrow\frac{17\left(x-3\right)}{4+\sqrt{5x+1}}+15\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{17}{4+\sqrt{5x+1}}+15\right)=0\)
Vi \(\frac{17}{4+\sqrt{5x+1}}+15>0\)
\(\Rightarrow x=3\left(n\right)\)
Vay nghiem cua PT la \(x=3\)
Bài 1:
\(\Leftrightarrow x\left(m^2-m-2\right)=m^2-1\)
\(\Leftrightarrow x\left(m-2\right)\left(m+1\right)=\left(m-1\right)\left(m+1\right)\)
Để phương trình vô nghiệm thì m-2=0
hay m=2
Để phương trình có nghiệm duy nhất thì (m-2)(m+1)<>0
hay \(m\notin\left\{2;-1\right\}\)
Để phương trình có vô số nghiệm thì m+1=0
hay m=-1
ĐKXĐ: ...
Đặt \(\left|2x-\frac{1}{x}\right|=a\ge0\Rightarrow4x^2+\frac{1}{x^2}=a^2+4\)
\(a^2+4+a-6=0\)
\(\Leftrightarrow a^2+a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left|2x-\frac{1}{x}\right|=1\Rightarrow\left[{}\begin{matrix}2x-\frac{1}{x}=1\\2x-\frac{1}{x}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x-1=0\\2x^2+x-1=0\end{matrix}\right.\) \(\Rightarrow...\)
Lời giải:
ĐKXĐ: $x\in\mathbb{R}$
Đặt $\sqrt{x^2+x+1}=a; \sqrt{x^2-x+1}=b(a,b\geq 0)$. PT trở thành:
$a=a^2-b^2+b$
$\Leftrightarrow (a-b)(a+b)-(a-b)=0$
$\Leftrightarrow (a-b)(a+b-1)=0$
$\Rightarrow a=b$ hoặc $a+b=1$
Nếu $a=b\Leftrightarrow a^2=b^2\Leftrightarrow x^2+x+1=x^2-x+1$
$\Leftrightarrow x=0$
Nếu $a+b=1$
$\Leftrightarrow \sqrt{x^2+x+1}+\sqrt{x^2-x+1}=1$
$\Leftrightarrow \sqrt{x^2+x+1}=1-\sqrt{x^2-x+1}$
$\Rightarrow x^2+x+1=x^2-x+2-2\sqrt{x^2-x+1}$
$\Leftrightarrow 1-2x=2\sqrt{x^2-x+1}$
$\Rightarrow (1-2x)^2=4(x^2-x+1)$
$\Leftrightarrow -3=0$ (vô lý)
Vậy pt có nghiệm $x=0$