K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2021

\(x^2+\left(x+1\right)^2=y^4+\left(y+1\right)^4\Leftrightarrow x^2+\left(x^2+2x+1\right)=y^4+\left(y^4+4y^3+6y^2+4y+1\right)\)\(\Leftrightarrow x^2+x=y^4+2y^3+3y^2+2y\Leftrightarrow x^2+x+1=\left(y^2+y+1\right)^2\)

\(\text{⋄}\)Xét \(x\ge0\)thì \(\hept{\begin{cases}\left(x^2+x+1\right)-x^2=x+1>0\\\left(x^2+x+1\right)-\left(x+1\right)^2=-x\le0\end{cases}}\Rightarrow x^2< x^2+x+1\le\left(x+1\right)^2\)\(\Rightarrow x^2+x+1=\left(x+1\right)^2\Leftrightarrow x=0\Rightarrow y\in\left\{0;-1\right\}\)(Do x nguyên và \(x^2+x+1\)là số chính phương)

\(\text{⋄}\)Xét \(x=-1\)thì \(y\in\left\{0;-1\right\}\)

\(\text{⋄}\)Xét \(x< -1\)thì \(\hept{\begin{cases}\left(x^2+x+1\right)-x^2=x+1< 0\\\left(x^2+x+1\right)-\left(x+1\right)^2=-x>0\end{cases}}\Rightarrow\left(x+1\right)^2< x^2+x+1< x^2\)(Không có nghiệm nguyên) 

Vậy ta có 4 cặp nghiệm nguyên (x,y) = {(0;0) ; (0;-1) ; (-1;0) ; (-1;-1)}

12 tháng 8 2020

khai triển và rút gọn 2 vế ta được x(x+1)=y4+2y3+3y2+2y

<=> x(x+1)=y2(y+1)2+2y(y+1)

<=> x2+x+1=(y2+y+1)2 (1)

nếu x>0 thì từ x2<x2+x+1<(x+1)2 => (1) không có nghiệm nguyên x>0

nếu x=0 hoặc x=-1 thì từ (1) => y2+y+1 = \(\pm\)\(\Leftrightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)

ta có nghiệm (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

nếu x<-1 thì từ (x+1)2<x2+x+1<x2

=> (1) không có nghiệm nguyên x<-1

tóm lại phương trình đã cho có 4 nghiệm nguyên (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

3 tháng 2 2020

Bạn kiểm tra lại đề bài nhé!

4 tháng 2 2020

sửa 2(x^2-4x+3)y

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

Y
2 tháng 2 2019

\(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}=4\)

\(\Leftrightarrow x^2-2+\dfrac{1}{x^2}+y^2-2+\dfrac{1}{y^2}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{x}\right)^2=0\\\left(y-\dfrac{1}{y}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm1\end{matrix}\right.\)

2 tháng 2 2019

\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)

\(\Rightarrow\left(x-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2=\left(y-\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow x=y=1=-1\)

2 tháng 2 2019

Forever Miss You : có cách này nhanh hơn =))

Áp dụng BĐT AM-GM ta có: 

\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}\ge2.\sqrt{\frac{x^2.1}{x^2}}+2.\sqrt{\frac{y^2.1}{y^2}}=2+2=4\)

Mà \(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{1}{x^2}\\y^2=\frac{1}{y^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4=1\\y^4=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)

Vậy \(\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)

1 tháng 3 2017

ai lam on giup to voi