K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =(x^2+3x)(x^2+3x+2)+1

=(x^2+3x)^2+2(x^2+3x)+1

=(x^2+3x+1)^2>=0 với mọi x

 

b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2

=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz

=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)

=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)

2 tháng 10 2021

x2-6xy+y2+1>0
(x-y)2+1>0
mà (x-y)^2>0
 

2 tháng 10 2021

\(-25x^2+5x-1=-\left(25x^2-5x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\forall x\)

22 tháng 10 2021

a) x2 – x + 1 

=(x2 – x + 1/4 )+3/4

=(x-1/2)2+3/4

ta có (x-1/2)2>=0

(x-1/2)2​+3/4>=​+3/4>0

vậy (x-1/2)2​+3/4>0 với mọi số thực x

b)  -x2+2x -4

= -x2+2x -1-3

=-(x2-2x +1)-3

=-(x-2)2​-3

ta có (x-2)2>=0

=>-(x-2)2=<0

=>-(x-2)2​-3=<​-3<0

vậy -(x-2)2​-3<0 với mọi số thực x

 

 

9 tháng 9 2021

\(1,x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\\ 2,-2x^2-x-1=-2\left(x^2+2\cdot\dfrac{1}{4}x+\dfrac{1}{16}+\dfrac{7}{16}\right)\\ =-2\left(x+\dfrac{1}{4}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}< 0\\ 3,\dfrac{1}{2}x^2-2x+2=\dfrac{1}{2}\left(x^2-4x+4\right)=\dfrac{1}{2}\left(x-2\right)^2\ge0\)

9 tháng 9 2021

ối, ghê vậy

29 tháng 11 2016

\(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{2^2}+\frac{3}{4}.\)

\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

pp bien doi ve tong binh phuong 

29 tháng 11 2016

có x2  - 2x +1 = ( x-1)\(\ge\) 0

16 tháng 8 2017

Ta có:

Giải bài 82 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có: Giải bài 82 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8 với mọi số thực x

⇒ Giải bài 82 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8 với mọi số thực x

⇒ Giải bài 82 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8 với mọi số thực (ĐPCM)

9 tháng 12 2019

a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)

17 tháng 11 2017

Ta có:

x2 – 2xy + y2 + 1

= (x2 – 2xy + y2) + 1

= (x – y)2 + 1.

(x – y)2 ≥ 0 với mọi x, y ∈ R

⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).

20 tháng 4 2019

P = x2 - 2x + 2 = (x – 1)2 + 1

Do (x – 1)2 ≥ 0 ∀x nên (x – 1)2 + 1 ≥ 1 ∀x

Vậy P luôn lớn hơn 0 với mọi x.