(x^2 + x )^2 + 4x^2 + 4x - 12

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2023

Em cần làm gì với bài này?

16 tháng 7 2023
phân tích thành nhân tử ạ
21 tháng 2 2016

dài thế để tôi nghĩ đã

21 tháng 2 2016

x=+-10;x=1+431/1000;x=-1893/2500;x=-7543/10000;x=1

1 tháng 2 2016

sorry e mới hk lp 7 thôi ạ

1 tháng 2 2016

minh chua hoc tich nha

9 tháng 6 2016

\(\Leftrightarrow\left[x^2+\left(\frac{2x}{x-2}\right)^2+2.x.\frac{2x}{x-2}\right]-\frac{4x^2}{x-2}=12\)

\(\Leftrightarrow\left(x+\frac{2x}{x-2}\right)^2-\frac{4x^2}{x-2}-12=0\)

\(\Leftrightarrow\left(\frac{x^2}{x-2}\right)^2-4.\frac{x^2}{x-2}-12=0\)

9 tháng 6 2016

\(\Leftrightarrow\frac{4x^2}{x^2-4x+4}+x^2-12=0\)

\(\Leftrightarrow\frac{x^4-4x^3-4x^2+48x-48}{x^2-4x+4}=0\)

\(\Leftrightarrow x^4-4x^3-4x^2+48x-48=0\)

\(\Leftrightarrow x^2+2x-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{5}-1\\x=\sqrt{5}-1\end{cases}}\)

5 tháng 10 2015

ĐKXĐ :  -1 <= x <= 3 

XH : \(\left(-x^2+4x+12\right)-\left(x^2+2x+3\right)=2x+9>0\)

=> VT > 0 

VÌ -1 <=x <=3  => VT = \(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}.\sqrt{3-x}\)

Áp dụng BĐT \(\left(ab-cd\right)^2\le\left(a^2-c^2\right)\left(b^2-d^2\right)\) ta có :

\(VT^2=\left(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}\sqrt{3-x}\right)^2\ge\left(x+2-x-1\right)\left(6-x-3+x\right)=1.3=3\)

=> VT \(\ge\sqrt{3}\) dấu bằng xảy ra khi \(\left(x+2\right)\left(6-x\right)=\left(x+1\right)\left(3-x\right)\) <=> x = 0 

VP = \(\sqrt{3}-x^2\le\sqrt{3}\)

Dấu bằng xảy ra khi x = 0 

Để VT bằng VP => x = 0 

7 tháng 4 2016

Dùng chức năng slove của máy tính ak

5 tháng 10 2015

Xét VT 

ĐKXĐ  \(-1\le x\le3\)

\(XH:\left(-x^2+4x+12\right)-\left(-x^2+2x+3\right)=2x+9\ge0\)

VT^2 = \(-x^2+4x+12-x^2+2x+3+2\sqrt{\left(-x^2+4x+12\right)\left(-x^2+2x+3\right)}\)

<=> \(VT^2=-2x^2+6x+15+2\sqrt{\left(x+2\right)\left(6-x\right)\left(x+1\right)\left(3-x\right)}\)

                    = \(\left(x+2\right)\left(3-x\right)+\left(6-x\right)\left(x+1\right)+2\sqrt{\left(x+2\right)\left(3-x\right)\left(6-x\right)\left(x+1\right)}+3\)

                   = \(\left(\sqrt{\left(x+2\right)\left(3-x\right)}+\sqrt{\left(6-x\right)\left(x+1\right)}\right)^2+3\ge3\)

=> VT \(\ge\sqrt{3}\) dấu '=' xảy khi \(\sqrt{\left(x+2\right)\left(3-x\right)}=\sqrt{\left(6-x\right)\left(x+1\right)}\)

<=> \(-x^2+x+6=-x^2+5x+6\Rightarrow x=0\)

VP = \(\sqrt{3}-x^2\le\sqrt{3}\) 

dấu '=' xảy ra khi tai x = 0 

Vậy VP = VT = căn 3 tại x = 0 

13 tháng 9 2015

 Nguyễn Minh Quang 123  tối đăng lại mình giải cho 

20 tháng 9 2015

1. ĐIỀU KIỆN XÁC ĐỊNH \(x\ge\frac{1}{2}.\)

Phương trình tương đương với  \(\sqrt{4x^2-1}-\sqrt{2x+1}=\sqrt{2x^2-x}-\sqrt{x}\Leftrightarrow\frac{2\left(2x^2-x-1\right)}{\sqrt{4x^2-1}+\sqrt{2x+1}}=\frac{2x\left(x-1\right)}{\sqrt{2x^2-x}+\sqrt{x}}\)

Ta có \(x=1\)  là nghiệm. Xét \(x\ne1:\) Phương trình tương đương với \(\frac{2\left(2x+1\right)}{\sqrt{4x^2-1}+\sqrt{x+1}}=\frac{2x}{\sqrt{2x^2-x}+\sqrt{x}}\)

Vì \(x\ge\frac{1}{2}\to\sqrt{4x^2-1}+\sqrt{x+1}\le2\sqrt{2x^2-x}+2\sqrt{x},2\left(2x+1\right)>2\times2x\to\)

\(\frac{2\left(2x+1\right)}{\sqrt{4x^2-1}+\sqrt{x+1}}>\frac{2\times2x}{2\left(\sqrt{2x^2-x}+\sqrt{x}\right)}=\frac{2x}{\sqrt{2x^2-x}+\sqrt{x}}\to\)  phưong trình vô nghiệm.

Vậy phương trình đã cho có nghiệm duy nhất  \(x=1\).

2.  Điều kiện  \(2-x^2>0,x\ne0\Leftrightarrow x\ne0,-\sqrt{2}\)\(<\)\(x<\sqrt{2}\)   Đặt \(y=\sqrt{2-x^2}\)  thì ta có \(x^2+y^2=2,\frac{1}{x}+\frac{1}{y}=2\to x+y=2xy\to x+y+2=\left(x+y\right)^2\to x+y=-1,2\)
Với \(x+y=-1\to xy=-\frac{1}{2}\to x\sqrt{2-x^2}=-\frac{1}{2}\to x^2\left(2-x^2\right)=\frac{1}{4},x<0\to\left(x^2-1\right)^2=\frac{3}{4}\)

\(x^2=1\pm\frac{\sqrt{3}}{2}\to x^2=\frac{\left(\sqrt{3}\pm1\right)^2}{4}\to x=\pm\frac{\sqrt{3}\pm1}{2}\to x=-\frac{\sqrt{3}+1}{2}\)

Trường hợp \(x+y=2\to xy=1\to x=y=1\to x=1.\)

Vậy phương trình có hai nghiệm là \(x=1,-\frac{\sqrt{3}+1}{2}\).

3. Điều kiện \(x^2-4x-5\ge0\) 

Phương trình viết lại dưới dạng \(2\left(x^2-4x-5\right)+\sqrt{x^2-4x-5}-3=0.\)  Đặt \(t=\sqrt{x^2-4x-5},t\ge0\to2t^2+t-3=0\to\left(t-1\right)\left(2t+3\right)=0\to t=1\to\)

\(x^2-4x-5=1\to x^2-4x+4=10\to x=2\pm\sqrt{10}.\)

13 tháng 9 2015

Đặt A = .....

A^2 = \(-x^2+4x+12+-x^2+2x+3+2\sqrt{\left(-x^2+4x+12\right)\left(-x^2+2x+3\right)}\)

    = \(-2x^2+6x+15+2\sqrt{\left(x+2\right)\left(6-x\right)\left(x+1\right)\left(3-x\right)}\)

    = \(\left(x+2\right)\left(3-x\right)+\left(6-x\right)\left(x+1\right)+2\sqrt{\left(x+2\right)\left(6-x\right)\left(x+1\right)\left(3-x\right)}+3\)

  = \(l\sqrt{\left(x+2\right)\left(3-x\right)}+\sqrt{\left(x+1\right)\left(6-x\right)}l+3\ge3\)

=> P \(\ge\sqrt{3}\)

Vậy GTNN là .... tại x = 0