Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)

đặt \(\sqrt{2x-x^2}=a\)
phương trình trở thành:
\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)
đến đây thì khai triển đi
1. ĐIỀU KIỆN XÁC ĐỊNH \(x\ge\frac{1}{2}.\)
Phương trình tương đương với \(\sqrt{4x^2-1}-\sqrt{2x+1}=\sqrt{2x^2-x}-\sqrt{x}\Leftrightarrow\frac{2\left(2x^2-x-1\right)}{\sqrt{4x^2-1}+\sqrt{2x+1}}=\frac{2x\left(x-1\right)}{\sqrt{2x^2-x}+\sqrt{x}}\)
Ta có \(x=1\) là nghiệm. Xét \(x\ne1:\) Phương trình tương đương với \(\frac{2\left(2x+1\right)}{\sqrt{4x^2-1}+\sqrt{x+1}}=\frac{2x}{\sqrt{2x^2-x}+\sqrt{x}}\).
Vì \(x\ge\frac{1}{2}\to\sqrt{4x^2-1}+\sqrt{x+1}\le2\sqrt{2x^2-x}+2\sqrt{x},2\left(2x+1\right)>2\times2x\to\)
\(\frac{2\left(2x+1\right)}{\sqrt{4x^2-1}+\sqrt{x+1}}>\frac{2\times2x}{2\left(\sqrt{2x^2-x}+\sqrt{x}\right)}=\frac{2x}{\sqrt{2x^2-x}+\sqrt{x}}\to\) phưong trình vô nghiệm.
Vậy phương trình đã cho có nghiệm duy nhất \(x=1\).
2. Điều kiện \(2-x^2>0,x\ne0\Leftrightarrow x\ne0,-\sqrt{2}\)\(<\)\(x<\sqrt{2}\) Đặt \(y=\sqrt{2-x^2}\) thì ta có \(x^2+y^2=2,\frac{1}{x}+\frac{1}{y}=2\to x+y=2xy\to x+y+2=\left(x+y\right)^2\to x+y=-1,2\)
Với \(x+y=-1\to xy=-\frac{1}{2}\to x\sqrt{2-x^2}=-\frac{1}{2}\to x^2\left(2-x^2\right)=\frac{1}{4},x<0\to\left(x^2-1\right)^2=\frac{3}{4}\)
\(x^2=1\pm\frac{\sqrt{3}}{2}\to x^2=\frac{\left(\sqrt{3}\pm1\right)^2}{4}\to x=\pm\frac{\sqrt{3}\pm1}{2}\to x=-\frac{\sqrt{3}+1}{2}\).
Trường hợp \(x+y=2\to xy=1\to x=y=1\to x=1.\)
Vậy phương trình có hai nghiệm là \(x=1,-\frac{\sqrt{3}+1}{2}\).
3. Điều kiện \(x^2-4x-5\ge0\)
Phương trình viết lại dưới dạng \(2\left(x^2-4x-5\right)+\sqrt{x^2-4x-5}-3=0.\) Đặt \(t=\sqrt{x^2-4x-5},t\ge0\to2t^2+t-3=0\to\left(t-1\right)\left(2t+3\right)=0\to t=1\to\)
\(x^2-4x-5=1\to x^2-4x+4=10\to x=2\pm\sqrt{10}.\)