Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. ( 22 + 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1
= ( 22 - 1 ).( 22 + 1 ).( 24 + 1 ).( 28 + 1 )....( 264 + 1 ) + 1
= ( 24 - 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1
= ( 28 + 1 ).....( 264 + 1 ) + 1
= ( 264 - 1 ).( 264 + 1 ) + 1
= 2128 - 1 + 1
= 2128
8.( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 32 - 1 ).( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 34 - 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 38 - 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 316 - 1 )......( 3128 + 1 ) + 1
= ( 3128 - 1 ).( 3128 + 1 ) + 1
= 3256 - 1 + 1
= 3256
Mình đã sửa lại, là như thế này: 8(x+1/x)2 + 4(x2 + 1/x2)2 - 4(x2 + 1/x2) + (x+1/x)2 = (x-4)2
Rút gọn các phân thức:
a) \(\frac{\left(3x+2\right)^2-\left(x+2\right)^2}{x^3-x^2}=\frac{9x^2+12x+4-x^2-4x-4}{x^3-x^2}=\frac{8x^2+8x}{x^3-x^2}=\frac{8x\left(x+1\right)}{x^2\left(x-1\right)}=\frac{8\left(x+1\right)}{x-1}\)
b) \(\frac{x^4-1}{x^3+2x^2-x-2}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^3-x\right)+\left(2x^2-2\right)}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\frac{x^2+1}{x+2}\)
c) \(\frac{x^2+7x+12}{x^2+5x+6}=\frac{\left(x^2+3x\right)+\left(4x+12\right)}{\left(x^2+3x\right)+\left(2x+6\right)}=\frac{\left(x+3\right)\left(x+4\right)}{\left(x++3\right)\left(x+2\right)}=\frac{x+4}{x+2}\)
d) \(\frac{x^{10}-x^8+x^6-x^4+x^2-1}{x^4-1}=\frac{\left(x^{10}-x^8\right)+\left(x^6-x^4\right)+\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{\left(x^2-1\right)\left(x^8+x^4+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{x^8+x^4+1}{x^2+1}\)
+) If \(x\ge1\)then\(\left|x-1\right|=x-1\)
Equation becomes \(x^2-3x+2+x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)(satisfy)
+) If \(x< 1\)then\(\left|x-1\right|=1-x\)
Equation becomes \(x^2-3x+2+1-x=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\left(unsatisfactory\right)\\x=3\left(unsatisfactory\right)\end{cases}}\)
So x = 1
\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)
\(=[\left(x^2+1\right)^2-x^2]\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)
\(=\left(x^4+2x^2+1-x^2\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\)
\(=[\left(x^4+1\right)^2-x^4]\left(x^8-x^4+1\right)\)
\(=\left(x^8+2x^4+1-x^4\right)\left(x^8-x^4+1\right)\)
\(=\left(x^8+x^4+1\right)\left(x^8-x^4+1\right)\)
\(=\left(x^8+1\right)^2-x^8=x^{16}+2x^8+1-x^8=x^{16}+x^8+1\)