Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)
PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)
=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m
Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)
Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)
Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)
xét pt \(x^2-mx+m-1=0\) \(\left(1\right)\)
xó \(\Delta=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\forall m\ne2\)
\(\Rightarrow pt\) (1) có 2 nghiệm phân biệt \(x_1,x_2\forall m\ne2\)
ta có vi -ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
theo bài ra \(\left|x_1\right|+\left|x_2\right|=6\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=36\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=36\)
\(\Leftrightarrow m^2-2\left(m-1\right)+2\left|m-1\right|=36\)
nếu \(m-1< 0\Rightarrow m^2-4m-32=0\) ta tìm được \(m=8\left(loai\right)\); \(m=-4\left(TM\right)\)
nếu \(m-1\ge0\Rightarrow m^2=36\Rightarrow m=6\left(TM\right);m=-6\left(loai\right)\)
vậy \(m=-4;m=6\) là các giá trị cần tìm
Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0
a) \(\Delta'=m^2+1>0\forall m\)
Vậy nên phương trình luôn có 2 nghiệm phân biệt.
b) Theo định lý Viet ta có:
\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=-1\end{cases}}\)
Vậy thì \(x_1^2+x_2^2-x_1.x_2=\left(x_1+x_2\right)^2-2x_1.x_2-x_1.x_2\)
\(=\left(x_1+x_2\right)^2-3x_1.x_2\)
\(=\left(2m\right)^2-3.\left(-1\right)=4m^2+3\)
Để \(x_1^2+x_2^2-x_1.x_2=7\) thì \(4m^2+3=7\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)
KL.
a, Có : denta = b^2 - 4ac = (-2)^2 - 4.1.(-1) = 8
denta > 0 => pt luôn có 2 nghiệm phân biệt
Vậy pt luôn có 2 nghiệm phân biệt
Tk mk nha
\(\Delta=m^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\) \(\forall m\)
\(\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m
Khi đó, theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\frac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\)
\(\Leftrightarrow\frac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Leftrightarrow\frac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Leftrightarrow\left(m-2\right)^2-2m^2+4\left(m-2\right)+4=4\left(m-2-m+1\right)\)
\(\Leftrightarrow-m^2=-4\)
\(\Rightarrow m=\pm2\)
a) \(\Delta'=m^2-\left(m-4\right)=m^2-m+4=m^2-2.m.\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\)
\(=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0;\forall m\)
=> phương trình (1) luôn có hai nghiệm phân biệt với mọi m
b) Áp dụng định lí Viet ta có:
\(x_1.x_2=m-4\)
\(x_1+x_2=-2m\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=\left(-2m\right)^2-2\left(m-4\right)=4m^2-2m+8\)
=> \(x_1^3+x_2^3=\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=\left(-2m\right)\left(4m^2-2m+8-\left(m-4\right)\right)\)
\(=-2m\left(4m^2-3m+12\right)\)
Theo bài ra ta có:
\(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1.x_2}\)
Thay vào ta có:
\(-2m=\frac{-2m\left(4m^2-3m+12\right)}{m-4}\)( đk m khác 4)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m-4=4m^2-3m+12\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\left(tm\right)\\4m^2-4m+16=0\left(l\right)\end{cases}\Leftrightarrow m=0}\)
Vì \(4m^2-4m+16=\left(2m-1\right)^2+15>0\) với mọi m
Vậy m =0
a: \(x^2-mx-4=0\)
a=1; b=-m; c=-4
Vì \(a\cdot c=1\cdot\left(-4\right)=-4< 0\)
nên phương trình luôn có hai nghiệm phân biệt với mọi m
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1\cdot x_2=\dfrac{c}{a}=-\dfrac{4}{1}=-4\end{matrix}\right.\)
\(x_1x_2-x_1^2-x_2^2=-13\)
=>\(x_1x_2-\left(x_1^2+x_2^2\right)=-13\)
=>\(x_1x_2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-13\)
=>\(-4-m^2+2\cdot\left(-4\right)=-13\)
=>\(-12-m^2=-13\)
=>\(m^2=1\)
=>\(\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)