Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5\cdot\left(\frac{x}{3}-4\right)=15\)
\(\Leftrightarrow\)\(\frac{x-12}{3}=3\)
\(\Leftrightarrow x-12=9\)
\(\Leftrightarrow x=21\)
Vạy x=21
+) 2x+3 chia hét cho x+1
Bạn chia cột dọc 2x+3 : x+1 =2 dư 1
Vậy để 2x+3 \(⋮\) x+1 thì x+1 \(\in\) Ư(1)
Mà Ư(1)={1;-1}
=> x+1={1;-1}
*)TH1: x+1=1<=>x=0
*)TH2: x+1=-1<=>x=-2
Vậy x={-2;0} thì 2x+3\(⋮\) x+1
b)Tìm GTLN của \(\frac{7}{\left(x+1\right)^2+1}\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\)
=> \(\frac{7}{\left(x+1\right)^2+1}\le\frac{7}{1}=7\)
a: \(\Leftrightarrow n+1+4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
b: \(\Leftrightarrow n+2-9⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{-1;-3;1;-5;7;-11\right\}\)
c: \(\Leftrightarrow2n-2+8⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)
Ta có: \(\frac{x+3}{x-2}=1+\frac{5}{x-2}\)
Để x + 3\(⋮\)x - 2 thì x - 2 phải là ước nguyên của 5
\(\Rightarrow\)(x - 2) = (- 5; - 1; 1; 5)
\(\Rightarrow\)x = (- 3; 1; 3; 7)
Vậy giá trị x nhỏ nhất cần tìm là x = - 3
ta có : \(\dfrac{-3}{6}=\dfrac{x}{-2}=\dfrac{-18}{y}=\dfrac{3}{24}\)
\(\Rightarrow\dfrac{-3}{6}=\dfrac{3}{24}\) (vô lí)
\(\Rightarrow\) đề sai
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
\(x⋮13\)
\(\Rightarrow x\in B\left(13\right)\)
\(\Rightarrow x\in\left\{13;26;39;52;65;78;...\right\}\)
mà: \(10< x< 70\)
\(\Rightarrow x\in\left\{26;39;52;65\right\}\)
Vậy Tập hợp các số thõa mãi của x là: \(\left\{26;39;52;65\right\}\)
Lời giải:
a. Đúng, vì $x=0$ thì $x+1=1$, mà $0\vdots 1$
Mệnh đề phủ định:
$\forall x\in\mathbb{N}; x\not\vdots x+1$
b. Sai, vì $x=0$ thì $0^2<1$
Mệnh đề phủ định: $\exists x\in\mathbb{Z}, x\geq -1\Rightarrow x^2< 1$
\( \left(x+2\right)⋮\left(x-1\right)\Leftrightarrow\frac{x+2}{x-1}\in Z\)
\(\frac{x+2}{x-1}=1+\frac{3}{x-1}\)
\(\Rightarrow x-1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-2;4\right\}\)