K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2020

(x2 - 6x + 9) - 15. ( x2 - 6x + 10 ) = 1

x2 - 6x + 9 - 15x2 + 90x - 150 = 1

-14 x2 + 84 x - 142 = 0

x2 - 6x + 71/7 = 0

x2 - 6x + 9 + 8/7 = 0

(x - 3)2 + 8/7 = 0

mà ( x - 3)2 + 8/7 > 0 \(\forall\)x

=> pt vô nghiệm

#mã mã#

18 tháng 1 2016

Đặt a = x2 - 6x + 9 , pt trở thành

a2 - 15(a + 1) = 1

=> a2 - 15a - 15 - 1 = 0 

=> a2 - 15a - 16 = 0

=> (a + 1)(a - 16) = 0 

=> a + 1 = 0 => a = -1

hoặc a - 16 = 0 => a = 16

* Với a = -1 => x2 - 6x + 9 = -1 => x2 - 6x + 10 = 0 , mà x2 - 6x + 10 > 0 => vô nghiệm

* Với a = 16 => x2 - 6x + 9 = 16 => x2 - 6x - 7 = 0 => (x + 1)(x - 7) = 0

                                                                              => x + 1 = 0 => x = -1

                                                                              hoặc x - 7 = 0 => x = 7

Vậy x = -1 , x = 7

14 tháng 2 2023

a) 

\(x^3+\left(x-5\right)\left(x+8\right)=2x^2-37\\ \Leftrightarrow x^3+x^2+3x-40=2x^2-37\\ \Leftrightarrow x^3-x^2+3x-3=0\\ \Leftrightarrow x^2\left(x-3\right)+3\left(x-3\right)=0\\ \Leftrightarrow\left(x^2+3\right)\left(x-3\right)=0\)

Vì \(x^2+3\ge3>0\Rightarrow x-3=0\\ \Leftrightarrow x=3\)

b)

\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\\ \Leftrightarrow\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

Đặt \(x^2+x=y\)

\(\Rightarrow y\left(y-2\right)=24\\ \Leftrightarrow y^2-2y+1=25\\ \Leftrightarrow\left(y-1\right)^2=25\\ \Leftrightarrow\left[{}\begin{matrix}y-1=5\\y-1=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}y=6\\y=-4\end{matrix}\right.\)

Nếu y = 6 

\(\Rightarrow x^2+x=6\\ \Leftrightarrow x^2+x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\ \Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Nếu y = -4

\(\Rightarrow x^2+x=-4\\ \Leftrightarrow x^2+x+\dfrac{1}{4}=-4+\dfrac{1}{4}\\ \Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=-\dfrac{15}{4}\)

Mà \(\left(x+\dfrac{1}{.2}\right)^2\ge0>-\dfrac{15}{4}\)

`=> Loại`

c) Vế còn lại là bao nhiêu?

14 tháng 2 2023

c vế còn lại =1 bạn ạ, mình viết bị thiếu

16 tháng 10 2019

a,a) ( x2- 6x+ 9)2 - 15 (x2- 6x + 10) = 1

Đặt (x2-6x+9)=a\(\left(a\ge0\right)\)Ta có:

a2-15(a+1)=1

<=> a2-15a-15-1=0

<=>a2-15a-16=0

<=>a2-16a+a-16=0

<=>a(a-16)+(a-16)=0

<=>(a-16)(a+1)=0\(\Rightarrow\orbr{\begin{cases}a-16=0\\a+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=16\\a=-1\end{cases}}}\)

Vậy...

15 tháng 1 2018

(x2-6x+9)2-15(x2-6x+9+1)=1

=> (x2-6x+9)2-15(x2-6x+9)-15=1

=>(x2-6x+9)(x2-6x+9-15)=16

=>(x2-6x+9)(x2-6x-6)=16

=> x2 -6x+9 va x2-6x-6 ∈ U(16)=(1,2,4,8,16) (vi x2-6x+9≥0)

Ban tu giai ra x nhe

15 tháng 2 2018

đặt x^2 - 6x + 9 = t

t^2 - 15(t + 1) = 1

t^2 - 15t -15 - 1 = 0

t^2 - 15t - 16 = 0

sau đó bạn tìm nghiệm nữa là xong ! Chúc học tốt nha!

1 tháng 3 2019

Đặt: \(x^2-6x+9=t\left(t\ge0\right)\)

Khi đó: \(\left(x^2-6x+9\right)^2-15\left(x^2-6x+10\right)=1\)

\(\Leftrightarrow t^2-15\left(t+1\right)=1\Leftrightarrow t^2-15t-15=1\)

\(\Leftrightarrow t^2-15t-16=0\Leftrightarrow\left(t-16\right)\left(t+1\right)=0\Leftrightarrow t=16\left(t\ge0\right)\) 

\(\Leftrightarrow x^2-6x+9=16\Leftrightarrow\left(x-3\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)

Tập nghiệm của pt: \(S=\left\{7;-1\right\}\)

28 tháng 4 2020

Đặt \(x^2-6x+9=t\)

\(\Rightarrow\)Phương trình ban đầu trở thành: \(t^2-15\left(t+1\right)=1\)

\(\Leftrightarrow t^2-15t-15=1\)\(\Leftrightarrow t^2-15t-16=0\)

\(\Leftrightarrow\left(t^2+t\right)-\left(16t+16\right)=0\)\(\Leftrightarrow t\left(t+1\right)-16\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-16\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t+1=0\\t-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=-1\\t=16\end{cases}}\)

Ta thấy: \(x^2-6x+9=\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow t\ge0\)\(\Rightarrow t=16\)\(\Rightarrow x^2-6x+9=16\)

\(\Leftrightarrow x^2-6x-7=0\)\(\Leftrightarrow\left(x^2+x\right)-\left(7x+7\right)=0\)

\(\Leftrightarrow x\left(x+1\right)-7\left(x+1\right)=0\)\(\Leftrightarrow\left(x+1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=7\end{cases}}\)

Vậy tập nghiệm của phương trình là: \(S=\left\{-1;7\right\}\)

4 tháng 1 2018

cảm ơn bạn nhìu nha

a: \(\Leftrightarrow\left(x^2-6x+9\right)^2-15\left(x^2-6x+9+1\right)-1=0\)

\(\Rightarrow\left(x^2-6x+9\right)^2-15\left(x^2-6x+9\right)-16=0\)

\(\Leftrightarrow\left(x^2-6x+9-16\right)\left(x^2-6x+9+1\right)=0\)

\(\Leftrightarrow x^2-6x-7=0\)

=>(x-7)(x+1)=0

=>x=7 hoặc x=-1

b: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

=>x+1=0

hay x=-1

11 tháng 2 2016

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)

\(\Leftrightarrow4\left(x+1\right)^2\left(2x+1\right)\left(2x+3\right)=18.4\)

\(\Leftrightarrow\left(2x+2\right)^2\left(2x+1\right)\left(2x+3\right)=72\)

\(\Leftrightarrow\left(4x^2+8x+3+1\right)\left(4x^2+8x+3\right)-72=0\)

\(\Leftrightarrow\left(4x^2+8x+3\right)^2+\left(4x^2+8x+3\right)-72=0\)

Đặt  y = 4x2+8x+3 ta được

\(y^2+y-72=0\)

\(\Leftrightarrow y^2-8y+9y-72=0\)

\(\Leftrightarrow\left(y-8\right)\left(y+9\right)=0\)

\(\Leftrightarrow y-8=0\Leftrightarrow y=8\)  hoặc  \(y+9=0\Leftrightarrow y=-9\)

Th1: \(y=8\Leftrightarrow4x^2+8x+3=8\)

                    \(\Leftrightarrow4x^2+8x-5=0\Leftrightarrow4x^2+10x-2x-5=0\Leftrightarrow2x\left(2x+5\right)-\left(2x+5\right)=0\)

                   \(\Leftrightarrow\left(2x+5\right)\left(2x-1\right)=0\)

              \(\Leftrightarrow2x+5=0\Leftrightarrow x=-\frac{5}{2}\)   hoặc     \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Th2: \(y=-9\Leftrightarrow4x^2+8x+3=-9\Leftrightarrow4x^2+8x+12=0\Leftrightarrow4\left(x^2+2x+3\right)=0\)

       \(\Leftrightarrow x^2+2x+3=0\Leftrightarrow\left(x+1\right)^2+2=0\)

  Vì  \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+2\ge2\) mà ta có  \(\left(x+1\right)^2+2=0\) nên k có giá trị của x 

Vậy tập nghiệm của phương trình là   \(S=\left\{-\frac{5}{2};\frac{1}{2}\right\}\)

a: \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\)

\(=\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)\)

b: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3 hoặc x=2