![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\)
=\(\sqrt{x^2-2.3.x+3^2+4}-\sqrt{x^2-2.3.x+3^2+1}\)
=\(\sqrt{\left(x-3\right)^2+2^2}-\sqrt{\left(x-3\right)^2+1^2}\)
Ta có :
\(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)
\(=\sqrt{x^2-6x+9+4}+\sqrt{x^2-6x+9+1}\)
\(=\sqrt{\left(x-3\right)^2+2^2}+\sqrt{\left(x-3\right)^2+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3
=>
\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ các bài bạn tự tìm nhé!
a)\(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
<=>\(\sqrt{8x+1}-\sqrt{2x-2}=\sqrt{7x+4}-\sqrt{3x-5}\)
Bình phương 2 vế
=>\(10x-1-2\sqrt{\left(8x+1\right)\left(2x-2\right)}=10x-1-2\sqrt{\left(7x+4\right)\left(3x-5\right)}\)
<=>\(\sqrt{\left(8x+1\right)\left(2x-2\right)}=\sqrt{\left(7x+4\right)\left(3x-5\right)}\)
=>16x2-14x-2=21x2-23x-20
<=>5x2-9x-18=0
<=>x=3 hoặc x=\(-\dfrac{6}{5}\)
Sau đó thử lại nghiệm xem có thõa mãn không (dù tìm ĐKXĐ rồi vẫn phải thử nhé)
b)
\(\sqrt{x+3-4\sqrt{x-1}+\sqrt{x+8-6\sqrt{x-1}}}=1\)
<=>\(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
<=>\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
*)x\(\ge10\)
<=>\(\sqrt{x-1}-2+\sqrt{x-1}-3=1\)
<=>\(2\sqrt{x-1}=6\)
<=>x=10(TM)
*)5\(\le x< 10\)
<=>\(\sqrt{x-1}-2+3-\sqrt{x-1}=1\left(LĐ\right)\)
*)1\(\le x< 5\)
<=>\(2-\sqrt{x-1}+3-\sqrt{x-1}=1\)
<=>\(2\sqrt{x-1}=4\)
<=>x=5(L)
Vậy 5\(\le x\le10\)
c)\(\sqrt{6-x}+\sqrt{x+2}=x^2-6x+13\)
Vế phải:x2-6x+9+4=(x-3)2+4\(\ge4\)(1)
Vế trái: Áp dụng BĐT Bunhia
Ta có:\(\left(\sqrt{6-x}+\sqrt{x+2}\right)^2\le\left(1+1\right)\left(6-x+x+2\right)=16\)
=>Vế trái \(\le4\)(2)
Từ 1 và 2=>Phương trình tương đương:\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\6-x=x+2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)(L)
Vậy PTVN
d)\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)
<=>\(\sqrt{x^2-x}=-\sqrt{x^2+x-2}\)
Bình phương 2 vế
=>x2-x=x2+x-2
<=>2x=2
<=>x=1
Thử lại thõa mãn Vậy x=1
1) + ĐK : tự xử
+ pt đã cho \(\Leftrightarrow\sqrt{8x+1}-\sqrt{2x-2}=\sqrt{7x+4}-\sqrt{3x-5}\)
\(\Rightarrow8x+1-2x+2-2\sqrt{16x^2-14x-2}=7x+4-3x+5-2\sqrt{21x^2-23x-20}\)
\(\Rightarrow10x-1-2\sqrt{16x^2-14x-2}=10x-1-\sqrt{21x^2-23x-20}\)
\(\Rightarrow16x^2-14x-2=21x^2-23x-20\Rightarrow5x^2-9x-18=0\Rightarrow\left[{}\begin{matrix}x=3\left(N\right)\\x=-\dfrac{6}{5}\left(L\right)\end{matrix}\right.\)
kl: x=5
P/s: + x=5 có nhận hay không phụ thuộc vào đk ở đầu bài, bạn tự giải rồi xét
+ bài này dùng dấu => , không dùng <=>, dùng <=> được nửa số điểm, nếu là gv khó tính sẽ gạch toàn bộ bài
![](https://rs.olm.vn/images/avt/0.png?1311)
2) Dễ thấy\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)
\(\Leftrightarrow1.\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=3\)
\(\Leftrightarrow\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)
Ta có: a+ b= \(\frac{-1+\sqrt{2}}{2}\) + \(\frac{-1-\sqrt{2}}{2}\)= -1
a*b = \(\frac{-1+\sqrt{2}}{2}\)* \(\frac{-1-\sqrt{2}}{2}\)= -\(\frac{1}{4}\)
a2 + b2 = (a+ b)2 - 2ab = 1+ \(\frac{1}{2}\)= \(\frac{3}{2}\)
a4 + b4 = (a2 + b2 )2 - 2a2b2 = \(\frac{9}{4}\)- \(\frac{1}{8}\)= \(\frac{17}{8}\)
a3 + b3 = ( a + b)3 - 3ab(a + b ) = -1-\(\frac{3}{4}\)= \(\frac{-7}{4}\)
vay a7 + b7 = (a3 + b3 )(a4 + b4 ) -a3b3(a+b)= \(\frac{-7}{4}\)* \(\frac{17}{8}\)- (-\(\frac{1}{64}\)) * (-1) = \(\frac{-239}{64}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)
Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)
\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)
Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2}{2}\)
c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))
\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}-3}{3}\)
b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )
bn thử dùng bình phương xem nhưng nó quá dài và đặt ẩn phụ thì cũng vậy nên cách này là tối ưu nhất
TXĐ : \(D=\left[-2;6\right]\)
\(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\forall x\)
\(VP=\sqrt{6-x}+\sqrt{x+2}\frac{\le}{B.C.S}\sqrt{\left(1+1\right)\left(6+2\right)}=4\)
\(\Rightarrow VT=VP=4\)
" = " \(\Leftrightarrow x=3\) (t/m)