\(\frac{-1+\sqrt{2}}{2}\)

b=\(\frac{-1-\sqrt{2}}{2}\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

2) Dễ thấy\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

\(\Leftrightarrow1.\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=3\)

\(\Leftrightarrow\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)

9 tháng 6 2017

Ta có:  a+ b= \(\frac{-1+\sqrt{2}}{2}\)    +    \(\frac{-1-\sqrt{2}}{2}\)=  -1

a*b  =  \(\frac{-1+\sqrt{2}}{2}\)*   \(\frac{-1-\sqrt{2}}{2}\)=   -\(\frac{1}{4}\)

a2  +   b2  =  (a+ b)2  -  2ab  = 1+ \(\frac{1}{2}\)=  \(\frac{3}{2}\)

a4  +  b4  =    (a2  +   b2 )2  -  2a2b2  =  \(\frac{9}{4}\)-   \(\frac{1}{8}\)=  \(\frac{17}{8}\)

a3  +   b3  =  ( a + b)3  -  3ab(a + b )  = -1-\(\frac{3}{4}\)\(\frac{-7}{4}\)

vay a7  +  b7  = (a3 +  b3 )(a4 + b4 ) -a3b3(a+b)=  \(\frac{-7}{4}\)*   \(\frac{17}{8}\)-  (-\(\frac{1}{64}\))  * (-1)  = \(\frac{-239}{64}\)

5 tháng 10 2016

(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3

=>

\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3

17 tháng 7 2017

Ta có :

\(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\)

=\(\sqrt{x^2-2.3.x+3^2+4}-\sqrt{x^2-2.3.x+3^2+1}\)

=\(\sqrt{\left(x-3\right)^2+2^2}-\sqrt{\left(x-3\right)^2+1^2}\)

23 tháng 8 2017

Ta có :

\(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)

\(=\sqrt{x^2-6x+9+4}+\sqrt{x^2-6x+9+1}\)

\(=\sqrt{\left(x-3\right)^2+2^2}+\sqrt{\left(x-3\right)^2+1}\)

13 tháng 11 2018

Ta có: \(A\cdot1=\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

=> A = 3

19 tháng 7 2015

\(\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)=x^2-6x+13-\left(x^2-6x+10\right)\)

\(\Rightarrow\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right).1=3\)

 

AH
Akai Haruma
Giáo viên
27 tháng 6 2019

Lời giải:

Bạn cứ nhớ công thức $\sqrt{x^2}=|x|$, rồi dùng điều kiện đề bài để phá dấu trị tuyệt đối là được

a)

\(\sqrt{16a^2}-5a=\sqrt{(4a)^2}-5a=|4a|-5a=4a-5a=-a\)

b)

\(3x+2-\sqrt{9x^2+6x+1}=3x+2-\sqrt{(3x)^2+2.3x.1+1^2}\)

\(=3x+2-\sqrt{(3x+1)^2}=3x+2-|3x+1|=3x+2-(3x+1)=1\)

c)

\(\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+1+2.\sqrt{7}.\sqrt{1}}-\sqrt{7}\)

\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{7}=|\sqrt{7}+1|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

d)

\(\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{13+1-2\sqrt{13}}+\sqrt{13+1+2\sqrt{13}}\)

\(=\sqrt{(\sqrt{13}-1)^2}+\sqrt{(\sqrt{13}+1)^2}=|\sqrt{13}-1|+|\sqrt{13}+1|\)

\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)

e)

\(2x-\sqrt{4x^2-4x+1}=2x-\sqrt{(2x-1)^2}=2x-|2x-1|=2x-(2x-1)=1\)

g)

\(|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=|x-2|+\frac{\sqrt{(x-2)^2}}{x-2}=|x-2|+\frac{|x-2|}{x-2}\)

\(=(x-2)+\frac{(x-2)}{x-2}=x-2+1=x-1\)

27 tháng 6 2019

dạ em cảm ơn thầy/cô ạ

12 tháng 9 2020

a)\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{3}{2}\sqrt{6}+2\frac{\sqrt{6}}{3}-4\frac{\sqrt{6}}{2}\)

\(=\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-\frac{4}{2}\right)=\sqrt{6}.\frac{1}{6}\)

b) \(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}=\left(x.\frac{\sqrt{6x}}{x}+\frac{\sqrt{6x}}{3}+\sqrt{6x}\right):\sqrt{6x}\)

\(=1+\frac{1}{3}+1=2\frac{1}{3}\)