\(^{x^2-5x+4=0}\)

\(x^2+15x+56=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

\(x^2-5x+4=0\)

\(\Leftrightarrow x^2-4x-x+4=0\)

\(\Leftrightarrow x\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)

\(x^2+15x+56=0\)

\(\Leftrightarrow x^2+7x+8x+56=0\)

\(\Leftrightarrow x\left(x+7\right)+8\left(x+7\right)=0\)

\(\Leftrightarrow\left(x+7\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+7=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-7\\x=-8\end{cases}}}\)

=.= hk tốt!!

4 tháng 7 2019

1) x2 - 5x + 4 = 0

<=> (x - 1)(x - 4) = 0

<=> x - 1 = 0 hoặc x - 4 = 0

       x = 0 + 1         x = 0 + 4

       x = 1               x = 4

=> x = 1 hoặc x = 4

2) x2 + 15x + 56 = 0

<=> (x + 7)(x + 8) = 0

<=> x + 7 = 0 hoặc x + 8 = 0

       x = 0 - 7           x = 0 - 8

        x = -7              x = -8

=> x = -7 hoặc x = -8

17 tháng 10 2019

a) \(x^2-2=0\)

\(\Rightarrow x^2-\left(\sqrt{2}\right)^2=0\)

\(\Rightarrow\left(x-\sqrt{2}\right).\left(x+\sqrt{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\x+\sqrt{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+\sqrt{2}\\x=0-\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}.\)

b) \(x^2+\frac{7}{4}=\frac{23}{4}\)

\(\Rightarrow x^2=\frac{23}{4}-\frac{7}{4}\)

\(\Rightarrow x^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{2;-2\right\}.\)

c) \(\left(x-1\right)^2=0\)

\(\Rightarrow\left(x-1\right)^2=0^2\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=0+1\)

\(\Rightarrow x=1\)

Vậy \(x=1.\)

g) \(\sqrt{x}=0\)

\(\Rightarrow x=0\)

Vậy \(x=0.\)

h) \(\sqrt{x}=4\)

\(\Rightarrow\sqrt{x}=\left(\sqrt{4}\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{16}\)

\(\Rightarrow x=16\)

Vậy \(x=16.\)

i) \(\sqrt{x}-\frac{1}{7}=0\)

\(\Rightarrow\sqrt{x}=0+\frac{1}{7}\)

\(\Rightarrow\sqrt{x}=\frac{1}{7}\)

\(\Rightarrow\sqrt{x}=\left(\sqrt{\frac{1}{7}}\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{\frac{1}{49}}\)

\(\Rightarrow x=\frac{1}{49}\)

Vậy \(x=\frac{1}{49}.\)

Chúc bạn học tốt!

17 tháng 10 2019

Số thực

30 tháng 7 2017

1, \(x^2-4x-4x+16=0\)

\(\Leftrightarrow x^2-8x+16=0\)

\(\Leftrightarrow\left(x-4\right)^2=0\)

\(\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy.............

2, \(x^2+3x-5x-15=0\)

\(\Leftrightarrow x^2-2x+1-16=0\)

\(\Leftrightarrow\left(x-1\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

Vậy...............

3, \(x^2-6x+8=0\)

\(\Leftrightarrow x^2-6x+9-1=0\)

\(\Leftrightarrow\left(x-3\right)^2-1=0\)

\(\Leftrightarrow\left(x-3\right)^3=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Vậy......................

4, \(x^2+8x+12=0\)

\(\Leftrightarrow x^2+8x+16-4=0\)

\(\Leftrightarrow\left(x+4\right)^2-4=0\)

\(\Leftrightarrow\left(x+4\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=2\\x+4=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)

Vậy............

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

7 tháng 8 2019

Bài 1:

a) \(\left(2-3x\right)-\left(5x+8\right)=15x\)

\(\Leftrightarrow2-3x-5x-8-15x=0\)

\(\Leftrightarrow-23x-6=0\)

\(\Leftrightarrow x=\frac{-6}{23}\)

Vậy...

b) \(3\left(x-3\right)-2\left(8-x\right)=6\)

\(\Leftrightarrow3x-9-16+2x-6=0\)

\(\Leftrightarrow5x-31=0\)

\(\Leftrightarrow x=\frac{31}{5}\)

Vậy...

c) \(\frac{7-x}{2}-\frac{2x-3}{4}=\frac{x+2}{8}-\frac{-1}{2}\)

\(\Leftrightarrow4\left(7-x\right)-2\left(2x-3\right)=x+2+4\)

\(\Leftrightarrow28-4x-4x+6-x-6=0\)

\(\Leftrightarrow-9x+28=0\)

\(\Leftrightarrow x=\frac{28}{9}\)

Vậy...

d) \(x^2\cdot\left(-4x\right)+3=0\)

\(\Leftrightarrow-4x^3=-3\)

\(\Leftrightarrow x^3=\frac{3}{4}\)

\(\Leftrightarrow x=\sqrt[3]{\frac{3}{4}}\)

Vậy...

a) \(\left(2-3x\right)-\left(5x+8\right)=15x\)

\(\Leftrightarrow2-3x-5x-8=15x\)

\(\Leftrightarrow15x+3x+5x=2-8\)

\(\Leftrightarrow23x=-6\)

\(\Leftrightarrow x=-\frac{6}{23}\)

Vậy : \(x=-\frac{6}{23}\)

b) \(3\left(x-3\right)-2\left(8-x\right)=6\)

\(\Leftrightarrow3x-9-16+2x=6\)

\(\Leftrightarrow5x=6+9+16=41\)

\(\Leftrightarrow x=\frac{41}{5}\)

Vậy : \(x=\frac{41}{5}\)

27 tháng 3 2021

a, Ta có : \(P\left(x\right)=5x^4-3x^2+3x-1-5x^4+4x^2-x-x^2+2\)

\(=2x+1\)

b,*  Thay x = 0 vào biểu thức trên ta có : \(2.0+1=1\)

Vậy nếu x = 0 thì biểu thức nhận giá trị 1 

* Thay x = -1 vào biểu thức trên ta có : \(2\left(-1\right)+1=-2+1=-1\)

Vậy nếu x = -1 thì biểu thức nhận giá trị là -1 

* Thay x = 1/2 vào biểu thức trên ta có : \(2.\frac{1}{2}+1=1+1=2\)

Vậy nếu x = 1/2 thì biểu thức nhận giá trị là 2 

c, Ta có \(P\left(x\right)=0\)hay \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

Ta có \(P\left(x\right)=1\)hay \(2x+1=1\Leftrightarrow x=0\)

28 tháng 8 2017

mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha

a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)

b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)

\(\Leftrightarrow x>-2\) vậy \(x>-2\)

c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)

d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)

e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)

f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)

vậy \(x>6\) hoặc \(x< 2\)

g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)

th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)

th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)

vậy \(x>3\) hoặc \(-2< x< 1\)

h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)

i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)

vậy \(-2< x< 1\)

27 tháng 8 2017

Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!

25 tháng 8 2016

c)     <=>    \(\frac{x+1}{2016}+1+\frac{x+2}{2015}+1\)\(+\frac{x+3}{2014}+1\)=   \(\frac{x+4}{2013}+1+\frac{x+5}{2012}+1\)\(+\frac{x+6}{2011}\)

        <=>  \(\frac{x+1+2016}{2016}+\frac{x+2+2015}{2015}+\frac{x+3+2014}{2014}\)  \(=\frac{x+4+2013}{2013}+\frac{x+5+2012}{2012}+\frac{x+6+2011}{2011}\)

        <=>     \(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\frac{x+2017}{2013}-\frac{x+2017}{2012}-\frac{x+2017}{2011}=0\)

      <=>       \(\left(x+2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)=0\)

     vì    \(\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)\)khác 0    

   =>     \(x+2017=0\) =>   \(x=-2017\)

           Vậy \(S=\left\{-2017\right\}\)

11 tháng 9 2016

Sao ấn được phân soos vậy?

1: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+2y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+2y^2\)

\(=3x^2+2y^2+2y^2=3x^2+4y^2\)

2: \(=7\left(x-y\right)+4a\left(x-y\right)-5\)

=-5

3: \(=\left(x-y\right)\left(x^2+xy+y^2\right)-xy\left(x-y\right)+3=3\)

4: \(=\left(x+y\right)^2-4\left(x+y\right)+1=9-12+1=-2\)