Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x+1}{15}+\frac{x+2}{14}=\frac{x+3}{13}+\frac{x+4}{12}\)
\(\Leftrightarrow\frac{x+16}{15}+\frac{x+16}{14}-\frac{x+16}{13}-\frac{x+16}{12}=0\)
\(\Leftrightarrow\left(x+16\right)\left(\frac{1}{15}+\frac{1}{14}-\frac{1}{13}-\frac{1}{12}\right)=0\)
\(\Leftrightarrow x=-16\)
2)3)4) tương tự
Gợi ý : 2) cộng 3 vào cả hai vế
3)4) cộng 2 vào cả hai vế
5) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=-3\)
\(\Leftrightarrow\frac{x+21}{20}+\frac{x+21}{19}+\frac{x+21}{18}=0\)
\(\Leftrightarrow\left(x+21\right)\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}\right)=0\)
\(\Leftrightarrow x=-21\)
6) sửa VT = 4 rồi tương tự câu 5)
\(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}.\)
\(\left(\frac{x+4}{2012}+1\right)+\left(\frac{x+3}{2013}+1\right)=\left(\frac{x+2}{2014}+1\right)+\left(\frac{x+1}{2015}+1\right)\)
\(\left(\frac{x+4}{2012}+\frac{2012}{2012}\right)+\left(\frac{x+3}{2013}+\frac{2013}{2013}\right)=\left(\frac{x+2}{2014}+\frac{2014}{2014}\right)+\left(\frac{x+1}{2015}+\frac{2015}{2015}\right)\)
\(\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
\(\frac{x+2016}{2012}+\frac{x+2016}{2013}-\frac{x+2016}{2014}-\frac{x+2016}{2015}=0\)
\(\left(x+2016\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
\(\Rightarrow x+2016=0\Rightarrow x=\left(-2016\right)\)
mk ko chép lại đề nhé bn
b,
=>\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|-\frac{14}{5}\right|\)
=>\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\) \(\Rightarrow\left|x-\frac{1}{3}\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=-2\\x-\frac{1}{3}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=\frac{7}{3}\end{cases}}}\)
c,\(\Rightarrow\frac{x-1}{2013}+\frac{x-2}{2012}-\frac{x-3}{2011}-\frac{x-4}{2010}=0\)
=> \(\frac{x-1}{2013}-1+\frac{x-2}{2012}-1-\left(\frac{x-3}{2011}-1+\frac{x-4}{2010}-1\right)=0\)
=>\(\frac{x-2014}{2013}+\frac{x-2014}{2012}-\frac{x-2014}{2011}-\frac{x-2014}{2010}=0\)
=.\(\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Do \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)=> x-2014=0
=> x=2014
d,\(\left(x-7\right)^{x-1}-\left(x-7\right)^{x+11}=0\)
=>\(\left(x-7\right)^{x-1}.\left[1-\left(x-7\right)^{x+12}\right]=0\)
=> \(\orbr{\begin{cases}\left(x-7\right)^{x-1}=0\\1-\left(x-7\right)^{x+12}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{x+12}=0\end{cases}}\)
=>x=7 hoặc x-7=1 hoặc x+12=0
=> x=7 hoặc x=8 hoặc x=-12
Vậy x=7, x=8, x=-12
k,3x+x2=0
=> x(3+x)=0
=>\(\orbr{\begin{cases}x=0\\3+x=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
m, x2-2x-3(x-2)=0
=> x(x-2)-3(x-2)=0
=> (x-3)(x-2)=0
=>\(\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
*****Chúc bạn học giỏi*****
(x-1)/2016 +(x-2)/2015 -(x-3)/2014 = (x-4)/2013. =>(x-1)/2016 +(x-2)/2015 = (x-3)/2014 + (x-4)/2013. =>. (X-1)/2016 -1 + (x-2)/2015 -1 = (x -3)/2014 -1 + (x-4)/2013 -1 => (x -2017)/2016 + (x-2017)/2015 -(x-2017)/2014 -(x-2017)/2013 =0. => (x-2017)(1/2016 +1/2015 -1/2014 -1/2013) = 0 => x-2017 =0 => x = 2017
Ta có: \(\frac{x-1}{2016}+\frac{x-2}{2015}-\frac{x-3}{2014}=\frac{x-4}{2013}\)
\(\Leftrightarrow\frac{x-1}{2016}+\frac{x-2}{2015}-\frac{x-3}{2014}-\frac{x-4}{2013}=0\)
\(\Leftrightarrow\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)-\left(\frac{x-3}{2014}-1\right)-\left(\frac{x-4}{2013}-1\right)=0\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Mà \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\) nên \(x-2017=0\Leftrightarrow x=2017\)
\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)
\(\Leftrightarrow\left(\frac{x-1}{2016}+1\right)+\left(\frac{x-2}{2015}+1\right)=\left(\frac{x-3}{2014}+1\right)+\left(\frac{x-4}{2013}+1\right)\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2014}\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x+2017}{2014}-\frac{x+2017}{2013}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
\(\Leftrightarrow x-2017=0\)
\(\Leftrightarrow x=2017\)
\(\frac{x+4}{2013}+\frac{x+3}{2014}=\frac{x+2}{2015}+\frac{x+1}{2016} \)
\(\Leftrightarrow\frac{x+4}{2013}+1+\frac{x+3}{2014}+1-\frac{x+2}{2015}-1-\frac{x+1}{2016}-1=0\)
\(\Leftrightarrow\frac{x+2014+2013}{2013}+\frac{x+3+2014}{2014}-\frac{x+2+2015}{2015}-\frac{x+1+2016}{2016}=0\)
\(\Leftrightarrow\frac{x+2017}{2013}+\frac{x+2017}{2014}-\frac{x+2017}{2015}-\frac{x+2017}{2016}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x+2017=0\) ( vì \(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\)>0)
\(\Leftrightarrow x=2017\)
Bài 1
\(a,\left|x\right|=-\left|-\frac{5}{7}\right|=>x\in\varnothing\)
\(b,\left|x+4,3\right|-\left|-2,8\right|=0\)
\(=>\left|x+4,3\right|-2,8=0\)
\(=>\left|x+4,3\right|=0+2,8=2,8\)
\(=>x+4,3=\pm2,8\)
\(=>\hept{\begin{cases}x+4,3=2,8\\x+4,3=-2,8\end{cases}=>\hept{\begin{cases}x=-1,5\\x=-7,1\end{cases}}}\)
\(c,\left|x\right|+x=\frac{2}{3}\)
\(=>\hept{\begin{cases}x+x=\frac{2}{3}\\-x+x=\frac{2}{3}\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)
( x - 2 )2012 + | y2 - 9 |2014 = 0 ( 1 )
vì ( x - 2 )2012 \(\ge\)0 ; | y2 - 9 |2014 \(\ge\)0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy x = 2 ; y = 3
còn lại tương tự
Vì (x -2 )2012> hoặc =0 mà |y2 -9 |2014 > hoặc =0 nên để (x -2 )2012 + | y2 -9 |2014 =0 thì (x-2)2012 =0 và |y2 -9| =0
=>( x-2)=0 và y2-9=0
=>x=0 và y2=9
=>x=o và y=3 hoặc x= -3
\(\frac{x+4}{2013}+\frac{x+3}{2014}=\frac{x+2}{2015}+\frac{x+1}{2016}\)
\(\Rightarrow\frac{x+4}{2013}+1+\frac{x+3}{2014}+1=\frac{x+2}{2015}+1+\frac{x+1}{2016}+1\)
\(\Rightarrow\frac{x+2017}{2013}+\frac{x+2017}{2014}=\frac{x+2017}{2015}+\frac{x+2017}{2016}\)
\(\Rightarrow\frac{x+2017}{2013}+\frac{x+2017}{2014}-\frac{x+2017}{2015}-\frac{x+2017}{2016}=0\)
\(\Rightarrow\left(x+2017\right)\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)
\(Do\)\(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\ne0\)
\(\Rightarrow x+2017=0\)
\(\Rightarrow x=-2017\)
Vậy \(x=-2017\)
bạn bấm vào "đúng 0" là sẽ có đáp án hiện ra
c) <=> \(\frac{x+1}{2016}+1+\frac{x+2}{2015}+1\)\(+\frac{x+3}{2014}+1\)= \(\frac{x+4}{2013}+1+\frac{x+5}{2012}+1\)\(+\frac{x+6}{2011}\)
<=> \(\frac{x+1+2016}{2016}+\frac{x+2+2015}{2015}+\frac{x+3+2014}{2014}\) \(=\frac{x+4+2013}{2013}+\frac{x+5+2012}{2012}+\frac{x+6+2011}{2011}\)
<=> \(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\frac{x+2017}{2013}-\frac{x+2017}{2012}-\frac{x+2017}{2011}=0\)
<=> \(\left(x+2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)=0\)
vì \(\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)\)khác 0
=> \(x+2017=0\) => \(x=-2017\)
Vậy \(S=\left\{-2017\right\}\)
Sao ấn được phân soos vậy?