Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-25\%=0\)
\(\Rightarrow x^2-\frac{1}{4}=0\)
\(\Rightarrow x^2=0+\frac{1}{4}\)
\(\Rightarrow x^2=\frac{1}{4}\)
Tự làm tiếp !!! ^.^"
\(a,\left(-31\right).\left(x+7\right)=0\\ \Rightarrow x+7=0\\ \Rightarrow x=-7\\ b,\left(8-x\right).\left(x+13\right)=0\\ \Rightarrow\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\\ c,\left(x^2-25\right)\left(3-x\right)=0\\ \Rightarrow\left(x-5\right)\left(x+5\right)\left(3-x\right)=0\\\Rightarrow \left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\\ d,\left(x-3\right)\left(x^2+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-4\left(loại\right)\end{matrix}\right.\\ \Rightarrow x=3\)
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
`x^2=3`
`=>x=\sqrt{3}\or\x=-\sqrt{3}`
`x^2=36`
`<=>x^2=(+-6)^2`
`<=>x=+-6`
`x^2=25`
`<=>x^2=(+-5)^2`
`<=>x=+-5`
`2x^2+(-20)=55`
`<=>2x^2-20=55`
`<=>2x^2=75`
`<=>x^2=75/2`
`<=>x=+-\sqrt{75/2}`
`2(x-1)^2+5^0=9`
`<=>2(x-1)^2+1=9`
`<=>2(x-1)^2=8`
`<=>(x-1)^2=4`
`<=>x-1=2\or\x-1=-2`
`<=>x=3\or\x=-1`
nếu x.2 mà để như vậy thì ko hợp lý thì 2 luôn đứng trước x nếu ghi sát nên chắc đề là x^2
\(\left(x^2-5\right)\left(x^2-25\right)\)
để\(\left(x^2-5\right)\left(x^2-25\right)\)là số nguyên âm
\(\Rightarrow\left(x^2-5\right)\left(x^2-25\right)< 0\)
=> x^2-5 và x^2-25 khác dấu
\(th1\orbr{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2>5\\x^2< 25\end{cases}}}\Leftrightarrow5< x^2< 25\left(tm\right)\)
\(th2\orbr{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2< 5\\x^2>25\end{cases}}}\Leftrightarrow25< x^2< 5\left(vl\right)\)
theo đề x là số nguyên => x^2 là số chính phương thỏa mãn \(5< x^2< 25\)
\(\Rightarrow x^2=9;x^2=16\)
\(\hept{\begin{cases}x^2=9\Leftrightarrow x=\pm3\\x^2=16\Leftrightarrow x=\pm4\end{cases}}\)
vậy với \(x=\pm3;x=\pm4\)thì \(\left(x^2-5\right)\left(x^2-25\right)\)là số nguyên âm
x − 4 x 2 − 25 = 0 = > x − 4 = 0 x 2 − 25 = 0 = > x = 4 x 2 = 25 = > x = 4 x = ± 5
ta có : \(\left(x^2+5\right)\left(x^2-25\right)< 0\)
vì \(x^2+5\ge5>0\forall x\) \(\Rightarrow\left(x^2+5\right)\left(x^2-25\right)< 0\) \(\Leftrightarrow x^2-25< 0\)
\(\Leftrightarrow x^2< 25\Leftrightarrow-5< x< 5\)
vậy \(-5< x< 5\)