K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

x2-4x=0

<=> x(x-4)=0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

Vậy x=0; x=4

29 tháng 4 2020

Câu này rất dễ theo đề bài x2  là x nhân x có nghĩa x nhân chính nó vậy ta có luôn x bằng 4 vì 4 nhân 4 trừ đi 42 bằng 0

8 tháng 9 2021

\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

 

8 tháng 9 2021

a,9x^2+y^2+2z^2−18x+4z−6y+20=0

⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0

⇔x=1;y=3;z=−1

b,5x^2+5y^2+8xy+2y−2x+2=0

⇔4(x+y)2+(x−1)2+(y+1)2=0

⇔x=−y;x=1y=−1⇔x=1y=−1

c,5x^2+2y^2+4xy−2x+4y+5=0

⇔(2x+y)^2+(x−1)^2+(y+2)^2=0

⇔2x=−y;x=1;y=−2

⇔x=1;y=−2

d,x^2+4y^2+z^2=2x+12y−4z−14

⇔(x−1)^2+(2y−3)^2+(z+2)^2=0

⇔x=1;y=3/2;z=−2

e: Ta có: x^2−6x+y2+4y+2=0

⇔x^2−6x+9+y^2+4y+4−11=0

⇔(x−3)^2+(y+2)^2=11

Dấu '=' xảy ra khi x=3 và y=-2

 

15 tháng 10 2021

b: \(B=\left(x+2\right)^2-\left(2x-1\right)^2\)

\(=x^2+4x+4-4x^2+4x-1\)

\(=-3x^2+8x+3\)

23 tháng 8 2023

\(B=-4x^2+12x-11\\ =-\left(\left(2x\right)^2-12x+11\right)\\ =-\left(\left(2x\right)^2-2.2x.3+9+2\right)\\ =-\left(2x-3\right)^2-2< 0\)

(vì \(\left(2x-3\right)^2\ge0\forall x\Rightarrow-\left(2x-3\right)^2\le0\forall x\Rightarrow-\left(2x-3\right)^2-2< 0\))

C=-2x^2+2x-5

=-2(x^2-x+5/2)

=-2(x^2-x+1/4+9/4)

=-2(x-1/2)^2-9/2<=-9/2<0 với mọi x

12 tháng 3 2023

`x^2 -12x +5 =0`

`<=> x^2-2*x*6 +6^2 +5 -6^2 =0`

`<=> (x-6)^2 -31 =0`

`<=> (x-6)^2 =31`

`=>`\(\left[{}\begin{matrix}x-6=\sqrt{31}\\x-6=-\sqrt{31}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{31}-6\\x=6-\sqrt{31}\end{matrix}\right.\)

=>x^2-12x+36-31=0

=>(x-6)^2=31

=>x-6=căn 31 hoặc x-6=-căn 31

=>x=căn 31+6 hoặc x=-căn 31+6

16 tháng 12 2022

\(Q=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2x^2+2y^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{2x^2+2y^2+4xy}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)

10 tháng 10 2019

\(-3x^2+4x-2020\)

\(=-3\left(x^2-\frac{4}{3}x+\frac{2020}{3}\right)\)

\(=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}+\frac{6056}{9}\right)\)

\(=-3\left[\left(x-\frac{2}{3}\right)^2+\frac{6056}{9}\right]\)

\(=-3\left(x-\frac{2}{3}\right)^2-\frac{6056}{3}\ge-\frac{6056}{3}\)

(Dấu "=" \(\Leftrightarrow x-\frac{2}{3}=0\Leftrightarrow x=\frac{2}{3}\))

\(2\left(x^2-x\right)-x\left(x+2\right)+4=0\)

\(\Leftrightarrow2x^2-2x-x^2-2x+4=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(S=\left\{2\right\}\)

`B = x^2- 2xy + y^2 + 2x - 10y + 17

`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`

`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.

 

26 tháng 7 2023

Mik cảm ơn