Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $9x^2-16-(3x-4)(2x+5)=0$
$\Leftrightarrow [(3x)^2-4^2]-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4)-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4-2x-5)=0$
$\Leftrightarrow (3x-4)(x-1)=0$
$\Leftrightarrow 3x-4=0$ hoặc $x-1=0$
$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=1$.
b.
$x^2+4x=12$
$\Leftrightarrow x^2+4x-12=0$
$\Leftrightarrow (x^2-2x)+(6x-12)=0$
$\Leftrightarrow x(x-2)+6(x-2)=0$
$\Leftrightarrow (x-2)(x+6)=0$
$\Leftrightarrow x-2=0$ hoặc $x+6=0$
$\Leftrightarrow x=2$ hoặc $x=-6$
c.
$x^2-2x=35$
$\Leftrightarrow x^2-2x-35=0$
$\Leftrightarrow (x^2+5x)-(7x+35)=0$
$\Leftrightarrow x(x+5)-7(x+5)=0$
$\Leftrightarrow (x+5)(x-7)=0$
$\Leftrightarrow x+5=0$ hoặc $x-7=0$
$\Leftrightarrow x=-5$ hoặc $x=7$
\(4x^2+5y^2=2022\) (1)
-Vì \(4x^2⋮2\) và \(2022⋮2\) nên \(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)
-Đặt \(y=2k\left(k\in Z\right)\) và thay vào (1) ta được:
\(4x^2+5.\left(2k\right)^2=2022\)
\(\Leftrightarrow4x^2+5.4k^2=2022\)
\(\Leftrightarrow4x^2+20k^2=2022\)
\(\Leftrightarrow x^2+5k^2=\dfrac{2022}{4}=505.5\) (vô lý do x,k là các số nguyên)
-Vậy phương trình vô nghiệm.
Ta có
\(\left(1+\sqrt{15}\right)^2=16+2\sqrt{15}< 16+2\sqrt{16}=16+8=24\)
Ta lại có \(\sqrt{24}^2=24\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
Bài làm
Ta có: ( 1 + V15 )2 = 1 + 15 + 2 V15 = 16 + 2V15
V24 2 = 24 = 16 + 8
Vì V152 = 15 < 16 = 42
Nên V15 < 4
=> 2V15 < 8
=> 16 + 2V15 < 24
=> ( 1 + V15 )2 < V24 2
Vậy 1 + V15 < V24
# Chúc bạn học tốt #
Ak mk bị nhầm tí sorry nha giải tiếp đoạn đó nha
(2x+1)^2+(y-3)^2 = 34 = 5^2 + 9^2
<=> (2x+1)^2 = 5^2 ; (y-3)^2 = 9^2 hoặc (2x+1)^2 = 9^2 ; (y-3)^2 = 5^2
<=> x=2 hoặc x=-3 ; y=12 hoặc y=-6
hoặc :
x=4 ; x=-5 hoặc y=8 ; y=-2
Vậy ............
Tk mk nha
pt <=> (4x^2+4x+1)+(y^2-6y+9) = 14
<=>(2x+1)^2 + (y-3)^2 = 14
<=> (2x+1)^2 = 14 - (y-3)^2 < = 14
Mà 2x+1 lẻ nên (2x+1)^2 thuộc {1;9}
+, Với (2x+1)^2 = 1 => (y-3)^2 = 13 => ko tồn tại y thuộc Z
+, Với (2x+1)^2 = 9 => (y-3)^2 = 5 => ko tồn tại y thuộc Z
Vậy ko tồn tại cặp số x,y thuộc Z t/m pt
Tk mk nha
Câu 1:
a) Ta có: 7x+21=0
\(\Leftrightarrow7x=-21\)
hay x=-3
Vậy: S={-3}
b) Ta có: 3x-2=2x-3
\(\Leftrightarrow3x-2-2x+3=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}
c) Ta có: 5x-2x-24=0
\(\Leftrightarrow3x=24\)
hay x=8
Vậy: S={8}
Câu 2:
a) Ta có: \(\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{2};1\right\}\)
b) Ta có: \(\left(2x-3\right)\left(-x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\-x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\-x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=7\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};7\right\}\)
c) Ta có: \(\left(x+3\right)^3-9\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2-9\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+3-3\right)\left(x+3+3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-6\end{matrix}\right.\)
Vậy: S={0;-3;-6}