![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng hằng đẳng thức
a) x2+16x+64
=> x2+2.8x+82
=> (x+8)2
b) 25x2+10x+1
=> (5x+1)2
c) x2-12x+36
=> (x+6)2
d) 4x2-4x+1
=> (2x-1)2
e) x2-2x+1
=> (x-1)2
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì P(x) có hệ số bậc cao nhất là 1
Nên P(x) có thể được viết dưới dạng: \(P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)
Và \(P\left(-1\right)=\left(-1\right)^5-5\left(-1\right)^3+4\left(-1\right)+1=1\)
\(P\left(\frac{1}{2}\right)=\frac{77}{32}\)
Ta có: \(Q\left(x\right)=2x^2+x-1=2x^2+2x-x-1=2x\left(x+1\right)-\left(x+1\right)=\left(x+1\right)\left(2x-1\right)\)
=> \(Q\left(x_1\right).\text{}\text{}Q\left(x_2\right).\text{}\text{}Q\left(x_3\right).\text{}\text{}Q\left(x_4\right).\text{}\text{}Q\left(x_5\right)\text{}\text{}\)
\(=\left(x_1+1\right)\left(2x_1-1\right)\left(x_2+1\right)\left(2x_2-1\right)\left(x_3+1\right)\left(2x_3-1\right)\left(x_4+1\right)\left(2x_4-1\right)\left(x_5+1\right)\left(2x_5-1\right)\)
\(=32\left(-1-x_1\right)\left(\frac{1}{2}-x_1\right)\left(-1-x_2\right)\left(\frac{1}{2}-x_2\right)\left(-1-x_3\right)\left(\frac{1}{2}-x_3\right)\left(-1-x_4\right)\left(\frac{1}{2}-x_4\right)\left(-1-x_5\right)\left(\frac{1}{2}-x_5\right)\)\(=32.P\left(-1\right).P\left(\frac{1}{2}\right)=32.1.\frac{77}{32}=77\)
\(p\left(x\right)=x^5-5x^3+4x+1=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)
\(Q\left(x\right)=2\left(\frac{1}{2}-x\right)\left(-1-x\right)\)
Do đó \(Q\left(x_1\right)\cdot Q\left(x_2\right)\cdot Q\left(x_3\right)\cdot Q\left(x_4\right)\cdot Q\left(x_5\right)\)
\(=2^5\left[\left(\frac{1}{2}-x_1\right)\left(\frac{1}{2}-x_2\right)\left(\frac{1}{2}-x_3\right)\left(\frac{1}{2}-x_4\right)\left(\frac{1}{2}-x_5\right)\right]\)
\(=\left(-1-x_1\right)\left(-1-x_2\right)\left(-1-x_3\right)\left(-1-x_4\right)\left(-1-x_5\right)\)
\(=32P\left(\frac{1}{2}\right)\cdot\left[P\left(-1\right)\right]\)
\(=32\cdot\left(\frac{1}{32}-\frac{5}{8}+\frac{4}{2}+1\right)\left(-1+5-4+1\right)\)
\(=4300\)
*Mình không chắc*
![](https://rs.olm.vn/images/avt/0.png?1311)
A = x2 - 4x + 1
A = ( x2 - 4x + 4 ) - 3
A = ( x - 2 )2 - 3
( x - 2 )2 ≥ 0 ∀ x => ( x - 2 )2 - 3 ≥ -3
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MinA = -3 <=> x = 2
B = 4x2 + 4x + 11
B = 4( x2 + x + 1/4 ) + 10
B = 4( x + 1/2 )2 + 10
4( x + 1/2 )2 ≥ 0 ∀ x => 4( x + 1/2 )2 + 10 ≥ 10
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
=> MinB = 10 <=> x = -1/2
C = ( x - 1 )( x + 3 )( x + 2 )( x + 6 )
C = [ ( x - 1 )( x + 6 ) ][ ( x + 3 )( x + 2 ) ]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = ( x2 + 5x )2 - 62 = ( x2 + 5x )2 - 36
( x2 + 5x )2 ≥ 0 ∀ x => ( x2 + 5x )2 - 36 ≥ -36
Đẳng thức xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
=> MinC = -36 <=> x = 0 hoặc x = -5
D = 5 - 8x - x2
D = -( x2 + 8x + 16 ) + 21
D = -( x + 4 )2 + 21
-( x + 4 )2 ≤ 0 ∀ x => -( x + 4 )2 + 21 ≤ 21
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> MaxD = 21 <=> x = -4
E = 4x - x2 + 1
E = -( x2 - 4x + 4 ) + 5
E = -( x - 2 )2 + 5
-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 5 ≤ 5
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxE = 5 <=> x = 2
\(x^2-4x+5\)
\(\Delta'=\left(-2\right)^2-1.5=4-5=-1< 0\)
=> PT vô nghiệm
\(x^2+x+\frac{1}{2}\)
\(\Delta=1^2-4.1.\frac{1}{2}=1-2=-1< 0\)
=>PT vô nghiệm
x2-4x+5=x(2-4)+5=-2x+5
x2+x+1/2=x(2+1)+1/2=3x+1/2
(x-1)2+2(x-1).(x+2)+(x+2)
=2(x-1)(1+x+2)+(x+2)
=2(x-1)(3+x)+x+2
=(2x-2)(3+x)+x+2
=6x+2x2-6-2x+x+2
=2x2+5x-4. (Ko biết đúng ko nữa....nếu đúng h mk nha!)
HAND!!