K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2020

( x2 + 4x + 3 )( x2 + 12x + 35 ) = 9

<=> ( x2 + x + 3x + 3 )( x2 + 5x + 7x + 35 ) = 9

<=> [ x( x + 1 ) + 3( x + 1 ) ][ x( x + 5 ) + 7( x + 5 ) ] = 9

<=> ( x + 1 )( x + 3 )( x + 5 )( x + 7 ) = 9

<=> [ ( x + 1 )( x + 7 ) ][ ( x + 3 )( x + 5 ) ] = 9

<=> ( x2 + 8x + 7 )( x2 + 8x + 15 ) = 9

<=> ( x2 + 8x + 7 )( x2 + 8x + 15 ) - 9 = 0

Đặt t = x2 + 8x + 7 

Phương trình tương đương với :

t( t + 8 ) - 9 = 0

<=> t2 + 8t - 9 = 0

<=> t2 - t + 9t - 9 = 0

<=> t( t - 1 ) + 9( t - 1 ) = 0

<=> ( t - 1 )( t + 9 ) = 0

<=> \(\orbr{\begin{cases}t-1=0\\t+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=1\\t=-9\end{cases}}\)

Với t = 1

=> x2 + 8x + 7 = 1

<=> x2 + 8x + 7 - 1 = 0 

<=> x2 + 8x + 6 = 0 (1)

\(\Delta'=b'^2-ac=4^2-1\cdot6=10\)

\(\Delta'>0\)nên (2) có hai nghiệm phân biệt :

\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=-4+\sqrt{10}=\sqrt{10}-4\\x_2=\frac{-b-\sqrt{\Delta'}}{a}=-4-\sqrt{10}=-\sqrt{10}-4\end{cases}}\)

Với t = -9

=> x2 + 8x + 7 = -9

<=> x2 + 8x + 7 + 9 = 0

<=> x2 + 8x + 16 = 0

<=> ( x + 4 )2 = 0

<=> x + 4 = 0

<=> x = -4

Vậy S = { \(\pm\sqrt{10}-4;-4\)}

3 tháng 9 2020

PT <=> \(x^4+16x^3+86x^2+176x+96=0\)

\(\left(x^2+8x+6\right)\left(x+4\right)^2=0\)

TH1 : \(\Delta=8^2-4.6=64-24=40\)

\(x_1=\frac{-8-\sqrt{40}}{2};x_2=\frac{-8+\sqrt{40}}{2}\)

TH2 : \(x=-4\)

Vậy \(\left\{x=-4\right\}\)

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

4 tháng 12 2021

a)\(y=x^2-4x+3=\left(x-3\right)\left(x-1\right)\)

b)\(y=x^2+4x+3=\left(x+1\right)\left(x+3\right)\)

c)\(y=-x^2+4x-3=\left(x-3\right)\left(x-1\right)\)

d)\(y=-x^2-4x-3=\left(x+1\right)\left(x+3\right)\)

2 tháng 2 2019

Đáp án C

25 tháng 3 2019

a) x2-4x+3=0

có Δ' = b'2-ac= 4-3=1 >0

nên phương trình có 2 nghiệm phân biệt: x1= 3; x2= 1

b) x2 -4=0

⇔ x2=4

\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)

c)x2+4x=0

⇔x (x+4)=0

\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

30 tháng 12 2023

b: Tọa độ đỉnh của (P): y=x2-4x+3 là:

\(\left\{{}\begin{matrix}x=\dfrac{-b}{2a}=\dfrac{-\left(-4\right)}{2}=\dfrac{4}{2}=2\\y=-\dfrac{b^2-4ac}{4a}=-\dfrac{\left(-4\right)^2-4\cdot1\cdot3}{4}=-\dfrac{16-12}{4}=-1\end{matrix}\right.\)

Bảng biến thiên:

loading...

Vẽ đồ thị hàm số:

loading...

e: Tọa độ đỉnh của (P): y=-x2+4x-3 là:

\(\left\{{}\begin{matrix}x=\dfrac{-b}{2a}=\dfrac{-4}{2\cdot\left(-1\right)}=\dfrac{4}{2}=2\\y=-\dfrac{b^2-4ac}{4a}=-\dfrac{4^2-4\cdot\left(-1\right)\cdot\left(-3\right)}{4\cdot\left(-1\right)}=1\end{matrix}\right.\)

Bảng biến thiên:

loading...

vẽ đồ thị hàm số:

loading...

28 tháng 12 2021

Theo VI-ét:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)

\(x^3_1+x^3_2-40=0\\ \Rightarrow\left(x_1+x_2\right)\left(x^2_1-x_1x_2+x^2_2\right)=0\\\Rightarrow4\left[\left(x^2_1+x_2^2\right)^2-3x_1x_2\right]-40=0\\ \Rightarrow\left(x^2_1+x_2^2\right)^2-3x_1x_2-10=0\\ \Rightarrow4^2-3\left(m-1\right)-10=0\\ \Rightarrow16-3m+3-10=0\\ \Rightarrow9-3m=0\\ \Rightarrow m=3\)

28 tháng 12 2021

hack ruiii:v

18 tháng 5 2022

D.\(x^2+5x+9< 0\)

\(x^2+5x+9=\left(x^2+2x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right)-\left(\dfrac{5}{2}\right)^2+9=\left(x+\dfrac{5}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)

Mà \(x^2+5x+9< 0\)

--> pt vô nghiệm

18 tháng 5 2022

e tưởng câu A .-.