K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: =>2x^2-4x+1=x^2+x+5

=>x^2-5x-4=0

=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)

b: =>11x^2-14x-12=3x^2+4x-7

=>8x^2-18x-5=0

=>x=5/2 hoặc x=-1/4

26 tháng 2 2019

mấy câu còn lại tương tự nhé

nghiệm của pt 2x2 - 7x + 5 là 2,5 và 1

lập trục xét dấu ( cho nhanh, k thì bạn chọn bảng xét dấu )

1 2,5

27 tháng 2 2019

bạn ơi , bạn có thể giải chi tiết từng câu được không ạ

26 tháng 11 2022

a: ĐKXĐ của A là x<>1; x<>-3

ĐKXĐ của B là x<>4

ĐKXĐ của C là x<>0; x<>2

ĐKXĐ của D là x<>3

ĐKXĐ của E là x<>0; x<>2

b: \(A=\dfrac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{2x}{x-1}\)

Để A=0 thì 2x=0

=>x=0

\(B=\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)^2}=\dfrac{x+4}{x-4}\)

Để B=0 thì x+4=0

=>x=-4

\(C=\dfrac{x\left(x+2\right)}{x\left(x-2\right)}=\dfrac{x+2}{x-2}\)

Để C=0 thì x+2=0

=>x=-2

\(D=\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-3\right)\left(x^2+3x+9\right)}=\dfrac{x+4}{x^2+3x+9}\)

Để D=0 thi x+4=0

=>x=-4
\(E=\dfrac{2x\left(x^2+2x+1\right)}{2x\left(x-2\right)}=\dfrac{\left(x+1\right)^2}{x-2}\)

Để E=0 thì (x+1)^2=0

=>x=-1

15 tháng 2 2018

f(x) = (3x2 – 10x + 3)(4x – 5)

+ Tam thức 3x2 – 10x + 3 có hai nghiệm x = 1/3 và x = 3, hệ số a = 3 > 0 nên mang dấu + nếu x < 1/3 hoặc x > 3 và mang dấu – nếu 1/3 < x < 3.

+ Nhị thức 4x – 5 có nghiệm x = 5/4.

Ta có bảng xét dấu:

Giải bài 2 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

f(x) > 0 khi x ∈ (1/3; 5/4) ∪ x ∈ (3; +∞)

f(x) = 0 khi x ∈ {1/3; 5/4; 3}

f(x) < 0 khi x ∈ (–∞; 1/3) ∪ (5/4; 3)

21 tháng 6 2017

f(x) = (3x2 – 4x)(2x2 – x – 1)

+ Tam thức 3x2 – 4x có hai nghiệm x = 0 và x = 4/3, hệ số a = 3 > 0.

Do đó 3x2 – 4x mang dấu + khi x < 0 hoặc x > 4/3 và mang dấu – khi 0 < x < 4/3.

+ Tam thức 2x2 – x – 1 có hai nghiệm x = –1/2 và x = 1, hệ số a = 2 > 0

Do đó 2x2 – x – 1 mang dấu + khi x < –1/2 hoặc x > 1 và mang dấu – khi –1/2 < x < 1.

Ta có bảng xét dấu:

Giải bài 2 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

f(x) > 0 ⇔ x ∈ (–∞; –1/2) ∪ (0; 1) ∪ (4/3; +∞)

f(x) = 0 ⇔ x ∈ {–1/2; 0; 1; 4/3}

f(x) < 0 ⇔ x ∈ (–1/2; 0) ∪ (1; 4/3)

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

9 tháng 1 2019

\(\sqrt{4x-5}=1-2x\)

Điều kiện: \(4x-5\)\(0\)\(x\)\(\dfrac{5}{4}\)

PT ⇔ \(4x-5=\left(1-2x\right)^2\)

\(4x-5=1-4x+4x^2\)

\(4x^2-8x+6=0\)

⇔ Phương trình vô nghiệm

\(\left|5x^2-11\right|=x-5\)

TH1: \(5x^2-11=x-5\)

\(5x^2-x-6=0\)

\(\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=-1\end{matrix}\right.\) (Loại)

TH2: \(5x^2-11=-x+5\)

\(5x^2+x-16=0\)

\(\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{321}}{10}\\x=\dfrac{-1-\sqrt{321}}{10}\end{matrix}\right.\)(Thỏa mãn)

Vậy \(x=\dfrac{-1+\sqrt{321}}{10}\)\(x=\dfrac{-1-\sqrt{321}}{10}\) là 2 nghiệm của phương trình.

\(x^4-3x^2-28=0\)

Đặt: \(t=x^2\) (\(t\)\(0\))

Ta được: \(t^2-3t-28=0\)

\(\left[{}\begin{matrix}t=7\\t=-4\end{matrix}\right.\)

Với \(t=7\)\(x^2=7\)

\(\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\end{matrix}\right.\)

Vậy \(x=\sqrt{7}\)\(x=-\sqrt{7}\) là nghiệm của phương trình.