K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

giải

5x-(4-2x+x^2)(x+2)+x(x-1)(x+1)=0

5x-(4x+8-2x^2-4x+x^3+2x^2)+x(x^2-1)=0

5x-4x-8+2x^2+4x-x^3-2x^2+x^3-1x=0

(5x-4x+4x-1x)+(-8)+(2x^2-2x^2)+(-x^3+x^3)=0

4x+(-8)=0

4x=0+8

4x=8

x=8:4

x=2

11 tháng 7 2017

D)(4x+1)(16x^2-4x+1)-16x(4x^2-5)=17

64x^3-16x^2+4x+16x^2-4x+1-64x^3+80x=17

80x+1=17

80x=17-1

80x=16

x=1/5

11 tháng 8 2023

a) \(4x^2+16x+3=0\)

\(\Delta'=84-12=72\Rightarrow\sqrt[]{\Delta'}=6\sqrt[]{2}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-8+6\sqrt[]{2}}{4}\\x=\dfrac{-8-6\sqrt[]{2}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\left(4-3\sqrt[]{2}\right)}{4}\\x=\dfrac{-2\left(4+3\sqrt[]{2}\right)}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(4-3\sqrt[]{2}\right)}{2}\\x=\dfrac{-\left(4+3\sqrt[]{2}\right)}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt[]{2}-4}{2}\\x=\dfrac{-3\sqrt[]{2}-4}{2}\end{matrix}\right.\)

b) \(7x^2+16x+2=1+3x^2\)

\(4x^2+16x+1=0\)

\(\Delta'=84-4=80\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{5}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-8+4\sqrt[]{5}}{4}\\x=\dfrac{-8-4\sqrt[]{5}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\left(2-\sqrt[]{5}\right)}{4}\\x=\dfrac{-4\left(2+\sqrt[]{5}\right)}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\left(2-\sqrt[]{5}\right)\\x=-\left(2+\sqrt[]{5}\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt[]{5}\\x=-2-\sqrt[]{5}\end{matrix}\right.\)

c) \(4x^2+20x+4=0\)

\(\Leftrightarrow4\left(x^2+5x+1\right)=0\)

\(\Leftrightarrow x^2+5x+1=0\)

\(\Delta=25-4=21\Rightarrow\sqrt[]{\Delta}=\sqrt[]{21}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-5+\sqrt[]{21}}{2}\\x=\dfrac{-5-\sqrt[]{21}}{2}\end{matrix}\right.\)

a) Ta có: \(x^2-9x+20=0\)

\(\Leftrightarrow x^2-5x-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

Vậy: x∈{4;5}

b) Ta có: \(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)

Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1=\left(x-2\right)^2+1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)

hay \(x^2-4x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x=0

Vậy: x=0

c) Sửa đề: \(x^2-2x-15=0\)

Ta có: \(x^2-2x-15=0\)

\(\Leftrightarrow x^2+3x-5x-15=0\)

\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: x∈{-3;5}

d) Ta có: \(\left(x^2-1\right)^2=4x+1\)

\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)

\(\Leftrightarrow x^4-2x^2-4x=0\)

\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)

\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)

\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)

\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)

Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

hay \(x^2+2x+2>0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

27 tháng 3 2020

cảm ơn bạn

21 tháng 6 2017

\(p=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+2010\)\(=\left(x^3+1\right)+x-\left(x^3-1\right)+2010=x^3+1+x-x^3+1+2010=x+2012\)Với \(x=-2010\Rightarrow p=-2010+2012=2\)

\(q=16x\left(4x^2-5\right)-\left(4x+1\right)\left(16x^2-4x+1\right)=64x^3-80x-64x^3-1=-80x-1\)Với \(x=\dfrac{1}{5}\Rightarrow q=-80.\dfrac{1}{5}-1=-17\)

18 tháng 1 2018

Chị cũng là fan của BTS à

18 tháng 1 2018

Chị hâm mộ V đúng không

6 tháng 9 2020

Tìm x biết:

4x2 - 6x = 0

\(\Leftrightarrow2x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\2x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x=\left\{0;\frac{3}{2}\right\}\)

b) 4x2 + 4x = -1

\(\Leftrightarrow4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

Vậy \(x=-\frac{1}{2}\)

c) 5x2 + x = 0

\(\Leftrightarrow x\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\5x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{1}{5}\end{matrix}\right.\)

Vậy \(x=\left\{0;-\frac{1}{5}\right\}\)

d) x3 - 5x = 4x2

\(\Leftrightarrow x^3-4x^2-5x=0\)

\(\Leftrightarrow x^3+x^2-5x^2-5x=0\)

\(\Leftrightarrow x^2\left(x+1\right)-5x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-5x\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=5\end{matrix}\right.\)

Vậy x ={0; - 1; 5}

3x(x-2) = x-2

\(\Leftrightarrow3x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy \(x=\left\{2;\frac{1}{3}\right\}\)

x3 - 16x = 0

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy x = {0; 4; -4}

15 tháng 2 2020

\(a.\left(3-x\right)^2-12+4x=0\)

\(\Rightarrow\left(3-x\right)^2-4.\left(3-x\right)=0\)

\(\Rightarrow\left(3-x\right)\left(-x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3-x=0\\-x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

\(b.\left(4x-5\right)^2-2.\left(16x^2-25\right)=0\)

\(\Rightarrow\left(4x-5\right)^2-2.\left(4x+5\right).\left(4x-5\right)=0\)

\(\Rightarrow\left(4x-5\right)\left(4x-5-8x-10\right)=0\)

\(\Rightarrow\left(4x-5\right)\left(-4x-15\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4x-5=0\\-4x-15=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}\)

15 tháng 2 2020

ths bn nh