K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

\(x^2-2xy+y^2-yz+xz\)

\(=\left(x^2-2xy+y^2\right)+\left(xz-yz\right)\)

\(=\left(x-y\right)^2+z\left(x-y\right)\)

\(=\left(x-y+z\right)\left(x-y\right)\)

6 tháng 4 2020

xz-yz-x^2 +2xy -y^2=z(x-y)-(x-y)^2=(x-y)(z-x+y)

26 tháng 4 2017

bài 125 sách NCPT toán 8 tập 1 nha bn

6 tháng 7 2016

\(a,x^2+2y^2+2xy-2y+2=0=>\left(x^2+2xy+y^2\right)+\left(y^2-2y+2\right)=0\)

\(=>\left(x+y\right)^2+\left(y^2-2y+1\right)+1=0=>\left(x+y\right)^2+\left(y-1\right)^2+1=0\)

Vì VP luôn \(\ge1>0\) nên ko tìm đc x,y

b, bn nhân 2 vào cả 2 vế rồi trừ 2 vế cho nhau ,khai triển ra hằng đẳng thức sẽ ra x=y=z

12 tháng 10 2019

a) Áp dụng BĐT Cauchy cho 2 số dương:

\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=2xy\)

\(y^2+z^2\ge2\sqrt{\left(yz\right)^2}=2yz\)

\(x^2+z^2\ge2\sqrt{\left(xz\right)^2}=2xz\)

Cộng từ vế của các BĐT trên:

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=y\end{cases}}\Leftrightarrow x=y=z\))

12 tháng 10 2019

b) \(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)\)

\(+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)(1)

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)nên (1) xảy ra

\(\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}\)

5 tháng 12 2017

\(xz-yz-x^2+2xy-y^2\)

\(=z\left(x-y\right)-\left(x^2-2xy+y^2\right)\)

\(=z\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(z-x+y\right)\)

13 tháng 6 2017

\(\left(x+y+z\right).\left[\left(x+y\right)^2-\left(x+y\right).z+z^2\right]-3xy.\left(x+y+z\right)\)

\(=\left(x+y+z\right).\left[\left(x+y\right)^2-\left(x+y\right).z+z^2-3xy\right]\)(đặt nhân tử chung)

\(=\left(x+y+z\right).\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)(khai triển theo hằng đẳng thức số 1 )

\(=\left(x+y+z\right).\left(x^2+y^2+z^2-xy-yz-zx\right)\)

21 tháng 6 2017

A = x2(x - 1) + 6(1 - x)

A = x3 - x2 + 6 - 6x

A = (x3 - 6x) - (x2 - 6)

A = x.(x2 - 6) - (x2 - 6)

A = (x - 1)(x2 - 6)

21 tháng 6 2017

C = x2 + 2xy + y2 - yz - xz

C = (x + y)2 - z.(x + y)

C = (x + y - z).(x + y)