Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2+2y^2+2xy-2y+2=0=>\left(x^2+2xy+y^2\right)+\left(y^2-2y+2\right)=0\)
\(=>\left(x+y\right)^2+\left(y^2-2y+1\right)+1=0=>\left(x+y\right)^2+\left(y-1\right)^2+1=0\)
Vì VP luôn \(\ge1>0\) nên ko tìm đc x,y
b, bn nhân 2 vào cả 2 vế rồi trừ 2 vế cho nhau ,khai triển ra hằng đẳng thức sẽ ra x=y=z
a) Áp dụng BĐT Cauchy cho 2 số dương:
\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=2xy\)
\(y^2+z^2\ge2\sqrt{\left(yz\right)^2}=2yz\)
\(x^2+z^2\ge2\sqrt{\left(xz\right)^2}=2xz\)
Cộng từ vế của các BĐT trên:
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=y\end{cases}}\Leftrightarrow x=y=z\))
b) \(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)\)
\(+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)(1)
Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)nên (1) xảy ra
\(\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}\)
\(xz-yz-x^2+2xy-y^2\)
\(=z\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=z\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(z-x+y\right)\)
\(\left(x+y+z\right).\left[\left(x+y\right)^2-\left(x+y\right).z+z^2\right]-3xy.\left(x+y+z\right)\)
\(=\left(x+y+z\right).\left[\left(x+y\right)^2-\left(x+y\right).z+z^2-3xy\right]\)(đặt nhân tử chung)
\(=\left(x+y+z\right).\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)(khai triển theo hằng đẳng thức số 1 )
\(=\left(x+y+z\right).\left(x^2+y^2+z^2-xy-yz-zx\right)\)
A = x2(x - 1) + 6(1 - x)
A = x3 - x2 + 6 - 6x
A = (x3 - 6x) - (x2 - 6)
A = x.(x2 - 6) - (x2 - 6)
A = (x - 1)(x2 - 6)
C = x2 + 2xy + y2 - yz - xz
C = (x + y)2 - z.(x + y)
C = (x + y - z).(x + y)
\(x^2-2xy+y^2-yz+xz\)
\(=\left(x^2-2xy+y^2\right)+\left(xz-yz\right)\)
\(=\left(x-y\right)^2+z\left(x-y\right)\)
\(=\left(x-y+z\right)\left(x-y\right)\)