K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(-2m\right)^2-4\left(2m-3\right)=4m^2-8m+12\)

\(=4m^2-8m+4+8\)

\(=\left(2m-2\right)^2+8>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có: \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=1\)

\(\Leftrightarrow\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=1\)

\(\Leftrightarrow\dfrac{2m-2}{x_1x_2-\left(x_1+x_2\right)+1}=1\)

\(\Leftrightarrow\dfrac{2m-2}{2m-3-2m+1}=1\)

\(\Leftrightarrow2m-2=1\cdot\left(-2\right)=-2\)

=>2m=0

hay m=0

28 tháng 5 2022

Ptr có `2` nghiệm `<=>\Delta' >= 0`

                             `<=>(-m)^2-(2m-3) >= 0`

                             `<=>m^2-2m+3 >= 0<=>(m-1)^2+2 >= 0` (LĐ)

`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2m),(x_1.x_2=c/a=2m-3):}`

Ta có:`1/[x_1-1]+1/[x_2-1]=1`

`<=>[x_2-1+x_1-1]/[(x_1-1)(x_2-1)]=1`

`<=>[x_1+x_2-2]/[x_1.x_2-x_1-x_2+1]=1`

`<=>[2m-2]/[2m-3-2m+1]=1

`<=>[2m-2]/[-2]=1`

`<=>2m-2=-2`

`<=>2m=0<=>m=0`

28 tháng 5 2021

Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)

\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)

\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)

Vậy m=1

Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)

Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)

  \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)

  \(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)

  \(\Leftrightarrow...\)  

 

23 tháng 5 2021

\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)

=> pt luôn có hai nghiệm pb

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)

\(\Rightarrow P\ge0\)

Dấu = xảy ra khi m=-1

25 tháng 6 2021

ĐK:`x_1,x_2 ne 0=>x_1.x_2 ne 0`

`=>-2m-1 ne 0=>m ne -1/2`

Ta có:`a=1,b=2m,c=-2m-1`

`=>a+b+c=1+2m-2m-1=0`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-2m-1\end{array} \right.\) 

PT có 2 nghiệm pn

`=>-2m-1 ne 1`

`=>-2m ne 2`

`=>m ne -1`

Nếu `x_1=1,x_2=-2m-1`

`pt<=>6=1+1/(-2m-1)`

`<=>5=1/(-2m-1)`

`<=>2m+1=-1/5`

`<=>2m=-6/5`

`<=>m=-3/5(tm)`

Nếu `x_2=1,x_1=-2m-1`

`pt<=>6/(-2m-1)=-2m-1+1=-2m`

`<=>6/(2m+1)=2m`

`<=>3/(2m+1)=m`

`<=>2m^2+m-3=0`

`a+b+c=0`

`=>m_1=1(tm),m_2=-c/a=-3/2(tm)`

Vậy `m in {-3/5,1,-3/2}` thì ....

Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m+1\right)\)

\(=\left(-2m+2\right)^2-4\left(m+1\right)\)

\(=4m^2-8m+4-4m-4\)

\(=4m^2-12m\)

Để phương trình có nghiệm thì \(\text{Δ}\ge0\)

\(\Leftrightarrow4m^2-12m\ge0\)

\(\Leftrightarrow4m\left(m-3\right)\ge0\)

\(\Leftrightarrow m\left(m-3\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)

Khi \(\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\), Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=m+1\end{matrix}\right.\)

Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1\cdot x_2}=4\)

\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)

\(\Leftrightarrow\dfrac{\left(2m-2\right)^2-2\cdot\left(m+1\right)}{m+1}=4\)

\(\Leftrightarrow4m^2-8m+4-2m-2=4\left(m+1\right)\)

\(\Leftrightarrow4m^2-10m+2-4m-4=0\)

\(\Leftrightarrow4m^2-14m-2=0\)

Đến đây bạn tự làm nhé, chỉ cần tìm m và đối chiều với điều kiện thôi

30 tháng 3 2021

Pt có 2 nghiệm

\(\to \Delta=[-2(m-1)]^2-4.1.(m+1)=4m^2-8m+4-4m-4=4m^2-12m\ge 0\)

\(\leftrightarrow m^2-3m\ge 0\)

\(\leftrightarrow m(m-3)\ge 0\)

\(\leftrightarrow \begin{cases}m\ge 0\\m-3\ge 0\end{cases}\quad or\quad \begin{cases}m\le 0\\m-3\le 0\end{cases}\)

\(\leftrightarrow m\ge 3\quad or\quad m\le 0\)

Theo Viét

\(\begin{cases}x_1+x_2=2(m-1)\\x_1x_2=m+1\end{cases}\)

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\leftrightarrow \dfrac{x_1^2+x_2^2}{x_1x_2}=4\)

\(\leftrightarrow \dfrac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)

\(\leftrightarrow \dfrac{[2(m-1)]^2-2.(m+1)}{m+1}=4\)

\(\leftrightarrow 4m^2-8m+4-2m-2=4(m+1)\)

\(\leftrightarrow 4m^2-10m+2-4m-4=0\)

\(\leftrightarrow 4m^2-14m-2=0\)

\(\leftrightarrow 2m^2-7m-1=0 (*)\)

\(\Delta_{*}=(-7)^2-4.2.(-1)=49+8=57>0\)

\(\to\) Pt (*) có 2 nghiệm phân biệt

\(m_1=\dfrac{7+\sqrt{57}}{2}(TM)\)

\(m_2=\dfrac{7-\sqrt{57}}{2}(TM)\)

Vậy \(m=\dfrac{7\pm \sqrt{57}}{2}\) thỏa mãn hệ thức

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

Để pt có 2 nghiệm dương phân biệt thì:

\(\left\{\begin{matrix} \Delta=25-4(m-2)>0\\ S=5>0\\ P=m-2>0\end{matrix}\right.\Leftrightarrow 2< m< \frac{33}{4}\)

Khi đó:

\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\Leftrightarrow 4(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1x_2}})=9\)

\(\Leftrightarrow 4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)

\(\Leftrightarrow 4(5t^2+2t)=9\) với $t=\frac{1}{\sqrt{m-2}}$

$\Rightarrow t=\frac{1}{2}$

$\Leftrightarrow m=6$ (thỏa)

 

30 tháng 5 2021

giải thích tui chỗ này ông ơi

Δ=(-2m)^2-4(m^2-m+1)

=4m^2-4m^2+4m-4=4m-4

Để PT có 2 nghiệm thì 4m-4>=0

=>m>=1

x1^2+2mx2=9

=>x1^2+x2(x1+x2)=9

=>x1^2+x2^2+x1x2=9

=>(x1+x2)^2-x1x2=9

=>4m^2-m^2+m-1=9

=>3m^2+m-10=0

=>3m^2+6m-5m-10=0

=>(m+2)(3m-5)=0

=>m=-2(loại) hoặc m=5/3(nhận)

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

\(x^2+6x+2m-3=0\)

\(\Delta=6^2-4\cdot1\cdot\left(2m-3\right)\)

\(=36-8m+12=-8m+48\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

=>-8m+48>0

=>-8m>-48

=>m<6

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-6\\x_1x_2=\dfrac{c}{a}=2m-3\end{matrix}\right.\)

\(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2+x_1+x_2\)

=>\(\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=x_1+x_2+2\)

=>\(\dfrac{-6-2}{x_1x_2-\left(x_1+x_2\right)+1}=-6+2=-4\)

=>\(x_1x_2-\left(x_1+x_2\right)+1=\dfrac{-8}{-4}=2\)

=>2m-3-(-6)=2

=>2m-3+6=2

=>2m+3=2

=>2m=-1

=>\(m=-\dfrac{1}{2}\left(nhận\right)\)

4 tháng 2

làm sai anh ạ

NV
8 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-5\ge0\Leftrightarrow m^2+2m-4\ge0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=5\end{matrix}\right.\)

\(\dfrac{1}{\left|x_1\right|}+\dfrac{1}{\left|x_2\right|}=2\Leftrightarrow\dfrac{\left|x_1\right|+\left|x_2\right|}{\left|x_1x_2\right|}=2\)

\(\Leftrightarrow\left|x_1\right|+\left|x_2\right|=2\left|x_1x_2\right|=10\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=100\)

\(\Leftrightarrow x_1^2+x_2^2+10=100\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=90\)

\(\Leftrightarrow4\left(m+1\right)^2-10=90\)

\(\Leftrightarrow\left(m+1\right)^2=25\Rightarrow\left[{}\begin{matrix}m=4\\m=-6\end{matrix}\right.\) 

Thế vào (1) kiểm tra thấy đều thỏa mãn, vậy...

8 tháng 5 2021

dạ pt có 2 nghiệm là chỉ lớn hơn không thôi chứ thầy sao có bằng 0 ạ