Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
a: Khi m=-3 thì (1) trở thành \(x^2-2\cdot\left(-2\right)x-\left(-3\right)-3=0\)
=>x2+4x=0
=>x(x+4)=0
=>x=0 hoặc x=-4
b: \(\text{Δ}=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Ta có: \(x_1^2+x_2^2=10\)
nên \(\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)=0\)
\(\Leftrightarrow4m^2-8m+4+2m+6=0\)
\(\Leftrightarrow4m^2-6m+10=0\)
\(\text{Δ}_1=\left(-6\right)^2-4\cdot4\cdot10=36-160< 0\)
Do đó: Phương trình vô nghiệm
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
a, Khi m = 0 thì :
pt <=> x^2+2x-3 = 0
<=> (x-1).(x+3) = 0
<=> x-1=0 hoặc x+3=0
<=> x=1 hoặc x=-3
Tk mk nha
\(\left(m-1\right)x^2-2mx+m-4=0\)
Theo Vi - ét , ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-4}{m-1}\end{matrix}\right.\)
Ta có :
\(A=3\left(x_1+x_2\right)+2x_1x_2-8\)
\(=3\left(\dfrac{2m}{m-1}\right)+2\left(\dfrac{m-4}{m-1}\right)-8\)
\(=\dfrac{6m}{m-1}+\dfrac{2m-8}{m-1}-8\)
\(=\dfrac{6m+2m-8}{m-1}-8\)
\(=\dfrac{8m-8}{m-1}-8\)
\(=\dfrac{8\left(m-1\right)}{m-1}-8\)
\(=8-8\)
\(=0\)
Vậy biểu thức A không phụ thuộc giá trị m
a: Thay x=5 vào pt, ta được:
5^2-2(m-1)*5+m^2-4m+3=0
=>m^2-4m+3+25-10m+10=0
=>m^2-14m+38=0
=>(m-7)^2=11
=>\(m=\pm\sqrt{11}+7\)
b: x1+x2=2m-2
x1*x2=m^2-4m+3
(x1+x2)^2-4x1x2
=4m^2-8m+4-4m^2+4m-6
=-4m-2
(x1+x2)^2-4x1x2+2(x1+x2)
=-4m-2+4m-4=-6