K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2023

`x^2 -12x +5 =0`

`<=> x^2-2*x*6 +6^2 +5 -6^2 =0`

`<=> (x-6)^2 -31 =0`

`<=> (x-6)^2 =31`

`=>`\(\left[{}\begin{matrix}x-6=\sqrt{31}\\x-6=-\sqrt{31}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{31}-6\\x=6-\sqrt{31}\end{matrix}\right.\)

=>x^2-12x+36-31=0

=>(x-6)^2=31

=>x-6=căn 31 hoặc x-6=-căn 31

=>x=căn 31+6 hoặc x=-căn 31+6

29 tháng 7 2017

\(8x^3+12x^2+6x+1=0\)

\(\Leftrightarrow\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3=0\)

\(\Leftrightarrow\left(2x+1\right)^3=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=-\frac{1}{2}\)

29 tháng 7 2017

\(8x^3+12x^2+6x+1=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(8x^2+8x+2\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\left(pt1\right)\\8x^2+8x+2=0\left(pt2\right)\end{cases}}\)

Giải pt 1 \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Giải pt 2 : vô nghiệm 

Vậy phương trình có 1 nghiệm duy nhất \(x=-\frac{1}{2}\)

Chúc bạn học giỏi !!!!

22 tháng 9 2019

Hình như đề bài hơi sai sai í bn '^' Mk nghĩ sửa 12x thành 12xy nha

TL :

4x2 - 12xy + 5y2

= 4x2 - 2xy - 10xy + 5y2

= 2x( 2x - y) - 5y( 2x - y )

= ( 2x - 5y )( 2x - y )

Thế này là xog òi đó bn :)

Nếu đề bài là đúng như bn vt trên kia thỳ xl ạ :>

Mk k phân tích đc :)

22 tháng 9 2019

Đồng ý với bạn Linh nhé :3

4x2 - 12xy + 5y2

= 4x2 - 2xy - 10xy + 5y2

= 2x( 2x - y) - 5y( 2x - y)

= ( 2x - y)(2x - 5y )

Mk nghĩ như v ms đúng :)

19 tháng 9 2018

Bài 1 :

1) 4x2 - y2 = ( 2x + y ) ( 2x - y )
2) 9x2 - 4y2 = ( 3x - 2y ) ( 3x + 2y )

3) 4x2 + y2 + 4xy = ( 2x + y )2

Bài 2:

1) 2x2 + 8x = 0

=> 2x ( x + 4 ) = 0

=> \(\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\) 

=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

2) 3 ( x - 4 ) + x2 - 4x = 0

=> 3 ( x - 4 ) + x ( x - 4 ) = 0

=> ( x - 4 ) ( 3 + x ) = 0

=> \(\orbr{\begin{cases}x-4=0\\3+x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)

3) 3 ( x - 2 ) = x2 - 2x 

=> 3 ( x - 2 ) - x2 + 2x = 0

=> 3 ( x - 2 ) - x ( x - 2 ) = 0

=> ( x - 2 ) ( 3 - x ) = 0

=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

4) x ( x - 2 ) - 6 ( 2 - x ) = 0

=> x ( x - 2 ) + 6 ( x - 2 ) = 0

=> ( x - 2 ) ( x + 6 ) = 0

=> \(\orbr{\begin{cases}x-2=0\\x+6=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

5) 2x ( x + 5 ) = x2 + 5x

=> 2x ( x + 5 ) - x2 - 5x = 0

=> 2x ( x + 5 ) - x ( x + 5 ) = 0

=> ( x + 5 ) ( 2x - x ) = 0

=> \(\orbr{\begin{cases}x+5=0\\2x-x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)

6 ) ( x - 2 )2 - x ( x + 3 ) = 9

=> x2 - 4x + 4 - x2 - 3x = 9

=> - 7x + 4 = 9

=> - 7x = 5

=> x = \(-\frac{5}{7}\)

19 tháng 9 2018

\(1,4x^2-y^2=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)

\(2,9x^2-4y^2=\left(3x\right)^2-\left(2y\right)^2=\left(3x-2y\right)\left(3x+2y\right)\)

\(3,4x^2+y^2+4xy=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)

\(1,2x^2+8x=0\Rightarrow2x\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

\(2,3\left(x-4\right)+x^2-4x=0\)

\(\Rightarrow3\left(x-4\right)+x\left(x-4\right)=0\)

\(\Rightarrow\left(3+x\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3+x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)

\(3,3\left(x-2\right)=x^2-2x\)

\(\Rightarrow3\left(x-2\right)-x^2+2x=0\)

\(\Rightarrow3\left(x-2\right)-x\left(x-2\right)=0\)

\(\Rightarrow\left(3-x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3-x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

\(4,x\left(x-2\right)-6\left(2-x\right)=0\)

\(\Rightarrow x\left(x-2\right)+6\left(x-2\right)=0\)

\(\Rightarrow\left(x+6\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)

22 tháng 7 2020

a.4x^2-12x+15 = 0; vô nghiệm vì vế trái = 4x^2-12x+15=(2x)^2-2.3.(2x)+3^2+6=(2x-3)^2+6>=6 nên vế trái>0

22 tháng 7 2020

b) Ta có 6x - x2 - 10 

= -x2 - 3x - 3x - 10

= -x(x + 3) - 3x - 9 - 1

= -x(x + 3) - 3(x + 3) - 1

= -(x + 3)(x + 3) - 1

= -(x + 3)2 - 1 = -[(x + 3)2 + 1]

Ta có \(\left(x+3\right)^2+1\ge\forall x\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1< 0\)

=> 6x - x2 - 10 < 0 \(\forall\)x

8 tháng 9 2018

a ) \(\left(x-1\right)\left(x+1\right)-2x^2=0\)

\(\Leftrightarrow x^2-1-2x^2=0\)

\(\Leftrightarrow-x^2-1=0\)

\(\Leftrightarrow-x^2=1\)

\(\Leftrightarrow x^2=-1\) ( Vô lý , \(x^2\ge0\forall x\) )

Vậy ko có g/t x thỏa mãn

b ) \(\left(2x+5\right)\left(x^2-3x+1\right)-x\left(2x^2-1\right)=3\)

\(\Leftrightarrow2x\left(x^2-3x+1\right)+5\left(x^2-3x+1\right)-2x^3+x=3\)

\(\Leftrightarrow2x^3-6x^2+2x+5x^2-15x+5-2x^3+x=3\)

\(\Leftrightarrow\left(2x^3-2x^3\right)-\left(6x^2-5x^2\right)+\left(2x-15x+x\right)+5=3\)

\(\Leftrightarrow-x^2-12x+5=3\)

\(\Leftrightarrow-\left(x^2+12x-5\right)=3\)

\(\Leftrightarrow x^2+12x-5=-3\)

\(\Leftrightarrow x^2+12x+36-41=-3\)

\(\Leftrightarrow\left(x+6\right)^2=-3+41\)

\(\Leftrightarrow\left(x+6\right)^2=38\)

\(\Leftrightarrow\left[{}\begin{matrix}x+6=\sqrt{38}\\x+6=-\sqrt{38}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{38}+6\\x=6-\sqrt{38}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\sqrt{38}+6\\x=6-\sqrt{38}\end{matrix}\right.\)

c ) \(\left(x-1\right)2x-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

:D

3 tháng 8 2016

x2 - x + y2 - y = x . x - x + y . y - y

= 2x + 2y

= 2(x + y)

\(x^2-x+y^2-y\)

\(=x.x-x+y.y-y\)

\(=2x+2y\)

\(2\left(x+y\right)\)

3 tháng 8 2016

\(=\left(x-x\right)^2+\left(y-y\right)^2=0^2+0^2=1+1=2\)

\(x^2-x-y^2-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)