K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)-40=0\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)

Đặt \(y=x^2+6x+5\), ta có: 

\(y\left(y+3\right)-40=0\)

\(\Leftrightarrow\left(y-5\right)\left(y+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)

1: 

\(\Leftrightarrow\left(x^2+5x+6\right)\left(x^2+5x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x\right)^2+10\left(x^2+5x\right)=0\)

\(\Leftrightarrow x^2+5x=0\)

=>x=0 hoặc x=-5

3: \(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

8 tháng 3 2018

Đặt \(x=y-3\).

\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=\left(y-2\right)\left(y-1\right)\left(y+2\right)\left(y+1\right)=\left(y^2-1\right)\left(y^2-4\right)=40\)

\(\Rightarrow y^2=9\)

\(\Rightarrow x=\hept{\begin{cases}0\\-6\end{cases}}\)

8 tháng 3 2018

https://diendantoanhoc.net/topic/170566-gi%E1%BA%A3i-pt-a-x1x2x4x540-b-x4-3x32x2-9x90/

tham khảo ở đó nha

24 tháng 3 2020

(x + 1)(x + 2)(x + 4)(x + 5) = 40

<=> (x + 1)(x + 5)(x + 2)(x + 4) - 40 = 0

<=> (x2 + 6x + 5)(x2 + 6x + 8) - 40 = 0

Đặt x2 + 6x + 5 = a <=> a(a + 3) - 40 = 0

<=> a2 + 3a - 40 = 0

<=> a2 + 8a - 5a - 40 = 0

<=> (a + 8)(a - 5) = 0

<=> \(\orbr{\begin{cases}a+8=0\\a-5=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x^2+6x+5+8=0\\x^2+6x+5-5=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x^2+6x+9+4=0\\x^2+6x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+3\right)^2+4=0\left(vn\right)\\x\left(x+6\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\) Vậy S  = {0; -6}

24 tháng 3 2018

1)

\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\left(x+1\right)\left(x+5\right).\left(x+2\right)\left(x+4\right)-40=0\)

\(\Leftrightarrow\left(x^2+6x+5\right).\left(x^2+6x+8\right)-40=0\)

Đặt \(a=x^2+6x+6\) ta có:

\(\Leftrightarrow\left(a-1\right)\left(a+2\right)-40=0\)

\(\Leftrightarrow a^2+a-2-40=0\)

\(\Leftrightarrow a^2-6x+7x-42=0\)

\(\Leftrightarrow a\left(a-6\right)+7\left(a-6\right)=0\)

\(\Leftrightarrow\left(a-6\right)\left(a+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x+6=6\\x^2+6x+6=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x=0\\x^2+6x+13=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)

(\(x^2+6x+13=\left(x+3\right)^2+4>0\left(loại\right)\))

Vậy.................

24 tháng 3 2018

3)

\(\left|x+4\right|=\left|3-2x\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=3-2x\\x+4=-3+2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=7\end{matrix}\right.\)

Vậy..........

8 tháng 9 2016

E=x5-5x4+5x3-5x2+5x-1

=x5-4x4+x3-4x2+x-x4+4x3-x2+4x-1

=x(x4-4x3+x2-4x+1)-(x4-4x3+x2-4x+1)

=(x-1)(x4-4x3+x2-4x+1)

Tại x=4 ta có:

E=(4-1)(44-4*43+42-4*4+1)

=3*(256-256+16-16+1)

=3*1

=3

8 tháng 9 2016

Thanks! Kết bn đcj ko dzậy vui

16 tháng 1 2021

a) \(x^2+2x=\left(x-2\right).3x\)

\(\Leftrightarrow x^2+2x=3x^2-6x\)

\(\Leftrightarrow x^2+2x-3x^2+6x=0\)

\(\Leftrightarrow-2x^2+8x=0\)

\(\Leftrightarrow-2x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy S = {0;4}

b) \(x^3+x^2-x-1=0\)

\(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\mp1\end{matrix}\right.\)

Vậy: S = {-1; 1}

c) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]=40\)

\(\Leftrightarrow\left(x^2+5x+x+5\right)\left(x^2+4x+2x+8\right)=40\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)

Đặt x2 + 6x + 5 = t

\(\Leftrightarrow t.\left(t+3\right)=40\)

\(\Leftrightarrow t^2+3t=40\)

\(\Leftrightarrow t^2+2.t.\dfrac{3}{2}+\dfrac{9}{4}=\dfrac{169}{4}\)

\(\Leftrightarrow\left(t+\dfrac{3}{2}\right)^2=\dfrac{169}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}t+\dfrac{3}{2}=\dfrac{13}{2}\\t+\dfrac{3}{2}=-\dfrac{13}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{13}{2}-\dfrac{3}{2}=\dfrac{10}{2}=5\\t=-\dfrac{13}{2}-\dfrac{3}{2}=-\dfrac{16}{2}=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x+5=5\\x^2+6x+5=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x=0\\x^2+6x+13=0\end{matrix}\right.\)

Mà: \(x^2+6x+13=x^2+2.x.3+9+4=\left(x+3\right)^2+4\ne0\)

=> x2 + 6x = 0

<=> x. (x + 6) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy S = {0; -6}

 

 

a) Ta có: \(x^2+2x=\left(x-2\right)\cdot3x\)

\(\Leftrightarrow x\left(x+2\right)-3x\left(x-2\right)=0\)

\(\Leftrightarrow x\left[\left(x+2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2-3x+6\right)=0\)

\(\Leftrightarrow x\left(-2x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-2x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-2x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy: S={0;4}

b) Ta có: \(x^3+x^2-x-1=0\)

\(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(x-1\right)\cdot\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

Vậy: S={-1;1}

c) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)-40=0\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)

\(\Leftrightarrow\left(x^2+6x\right)^2+13\left(x^2+6x\right)+40-40=0\)

\(\Leftrightarrow\left(x^2+6x\right)^2+13\left(x^2+6x\right)=0\)

\(\Leftrightarrow\left(x^2+6x\right)\left(x^2+6x+13\right)=0\)

\(\Leftrightarrow x\left(x+6\right)\left(x^2+6x+13\right)=0\)

mà \(x^2+6x+13>0\forall x\)

nên \(x\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy: S={0;-6}

3 tháng 2 2017

2, đặt x2+x=a ta có:

a+4a-12=0\(\Leftrightarrow\)( a+2.2a+4)-16=0 \(\Leftrightarrow\) (a+2)2-42=0 \(\Leftrightarrow\)(a-2)(a+6)=0

\(\left[\begin{matrix}a-2=0\\a+6+0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}a=2\\a=-6\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[\begin{matrix}x^2+x-2=0\\x^2+x+6=0\left(vl\right)\end{matrix}\right.\)

\(\Leftrightarrow\)x2-x+2x-2=0\(\Leftrightarrow\)x(x-1)+2(x-1)=0\(\Leftrightarrow\left[\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

vậy pt có tập nghiệm là S=\(\left\{-2;1\right\}\)

3, (x+1) (x+2) (x+4) (x+5)= 40

\(\Leftrightarrow\)(x+1)(x+5)(x+2)(x+4)=40

\(\Leftrightarrow\)(x2+6x+5)(x2+6x+8)-40=0

đặt x2+6x+5=y ta có

y(y+3)-40=0\(\Leftrightarrow\)y2+2.\(\frac{3}{2}y\)+\(\frac{9}{4}\)-\(\frac{169}{4}\)=0\(\Leftrightarrow\)(y+\(\frac{3}{2}\))2-(\(\frac{13}{2}\))2=0\(\Leftrightarrow\)(y-5)(y+8)=0\(\Leftrightarrow\left[\begin{matrix}y-5=0\\y+8=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[\begin{matrix}y=5\\y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x^2+6x+5=5\\x^2+6x+5=-8\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x^2+6x=0\\x^2+6x+13=0\left(vl\right)\end{matrix}\right.\)\(\Leftrightarrow\)x(x+6)=0\(\Leftrightarrow\left[\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

vậy pt có tập nghiêm là S=\(\left\{-6;0\right\}\)

2 tháng 2 2017

2) (x2 +x )+4 (x2 +x) -12= 0

đặt x2+x=a rồi thay vào , biến đổi thành HDT bình phương là đc

3) (x+1) (x+2) (x+4) (x+5)= 40

nhân (x+1)(x+5)và (x+2)(x+4)rồi đặt biến phụ rồi làm giống câu trên (chuyển 40 sang vế phải)

28 tháng 11 2016

mik chẳng hỉu gì cả

@@#$^^#^&%&$&%$##%$#@##@$#@#$%^*%^&^%$%

8 tháng 12 2016

bằng 1024

Mik bấm bừa là đúng :v

Bài 1: 

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)

Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)

\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)

Suy ra: \(-12x-3=8x-2-6x-8\)

\(\Leftrightarrow-12x-3-2x+10=0\)

\(\Leftrightarrow-14x+7=0\)

\(\Leftrightarrow-14x=-7\)

\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)