Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)(x2-4x+16)(x+4)-x(x+1)(x+2)+3x2=0
\(\Rightarrow\)(x3+64)-x(x2+2x+x+2)+3x2=0
\(\Rightarrow\)x3+64-x3-2x2-x2-2x+3x2=0
\(\Rightarrow\)-2x+64=0
\(\Rightarrow\)-2x=-64
\(\Rightarrow\)x=\(\dfrac{-64}{-2}\)
\(\Rightarrow x=32\)
2)(8x+2)(1-3x)+(6x-1)(4x-10)=-50
\(\Rightarrow\)8x-24x2+2-6x+24x2-60x-4x+10=50
\(\Rightarrow\)-62x+12=50
\(\Rightarrow\)-62x=50-12
\(\Rightarrow\)-62x=38
\(\Rightarrow\)x=\(-\dfrac{38}{62}=-\dfrac{19}{31}\)
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
Bài 1
a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)
b/
\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)
\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
1.
c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)
\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)
d/
\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)
\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
a) x = -1. b) x = 4 hoặc x = 5.
c) x = ± 2 . d) x = 1 hoặc x = 2.
e, \(\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=0\Leftrightarrow\left(x-2\right)\left(x+2+x-2\right)=0\Leftrightarrow x=0;x=2\)
f, \(\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x-1\right)^2=0\Leftrightarrow x=1;x=-1\)
g, \(x^2\left(x-3\right)+4\left(3-x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\Leftrightarrow x=2;x=-2;x=3\)
h, \(\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\Leftrightarrow x=4;x=-\dfrac{2}{3}\)
\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)
\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
2, đặt x2+x=a ta có:
a+4a-12=0\(\Leftrightarrow\)( a+2.2a+4)-16=0 \(\Leftrightarrow\) (a+2)2-42=0 \(\Leftrightarrow\)(a-2)(a+6)=0
\(\left[\begin{matrix}a-2=0\\a+6+0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}a=2\\a=-6\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[\begin{matrix}x^2+x-2=0\\x^2+x+6=0\left(vl\right)\end{matrix}\right.\)
\(\Leftrightarrow\)x2-x+2x-2=0\(\Leftrightarrow\)x(x-1)+2(x-1)=0\(\Leftrightarrow\left[\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
vậy pt có tập nghiệm là S=\(\left\{-2;1\right\}\)
3, (x+1) (x+2) (x+4) (x+5)= 40
\(\Leftrightarrow\)(x+1)(x+5)(x+2)(x+4)=40
\(\Leftrightarrow\)(x2+6x+5)(x2+6x+8)-40=0
đặt x2+6x+5=y ta có
y(y+3)-40=0\(\Leftrightarrow\)y2+2.\(\frac{3}{2}y\)+\(\frac{9}{4}\)-\(\frac{169}{4}\)=0\(\Leftrightarrow\)(y+\(\frac{3}{2}\))2-(\(\frac{13}{2}\))2=0\(\Leftrightarrow\)(y-5)(y+8)=0\(\Leftrightarrow\left[\begin{matrix}y-5=0\\y+8=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[\begin{matrix}y=5\\y=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x^2+6x+5=5\\x^2+6x+5=-8\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x^2+6x=0\\x^2+6x+13=0\left(vl\right)\end{matrix}\right.\)\(\Leftrightarrow\)x(x+6)=0\(\Leftrightarrow\left[\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
vậy pt có tập nghiêm là S=\(\left\{-6;0\right\}\)
2) (x2 +x )+4 (x2 +x) -12= 0
đặt x2+x=a rồi thay vào , biến đổi thành HDT bình phương là đc
3) (x+1) (x+2) (x+4) (x+5)= 40
nhân (x+1)(x+5)và (x+2)(x+4)rồi đặt biến phụ rồi làm giống câu trên (chuyển 40 sang vế phải)