Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5050\)
\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+100\right)=5050\)
\(\Leftrightarrow100x+5050=5050\)
\(\Leftrightarrow100x=0\)
\(\Leftrightarrow x=0\)
Bài giải
a, \(1075\cdot\left(x-3\right)\cdot\left(x-1\right)=0\)
\(\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{3\text{ ; }1\right\}\)
b, \(2\cdot\left(x-7\right)+3\cdot\left(x+1\right)\)
\(=2x-14+3x+3\)
\(=5x-11\)
c, \(x+1+x+2+...+x+100=5750\)
\(\left(x+x+...+x\right)+\left(1+2+...+100\right)=5750\)
\(100x+\left(100-1+1\right)\cdot\left(100+1\right)\text{ : }2=5750\)
\(100x+100\cdot101\text{ : }5=5750\)
\(100x+50\cdot101=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(x=700\text{ : }100\)
\(x=7\)
A có 19 phần tử
B có vô hạn phần tử
C có 91 phần tử
D có 48 phần tử
C=(1x3+3x5+...+99x101)+(2x4+4x6+...+98x100)
đặt S=1x3+3x5+...+99x101
=>6S=6x(1x3+3x5+...+99x101)
=1x3x(5+1)+3x5x(7-1)+...+97x99x(101-95)+99x101x(103-97)
=1x3x5+1x3x1+3x5x7-1x3x5+....+97x99x101-95x97x99+99x101x103-97x99x101
=1x3x1+99x101x103
=>S=(3+99x101x103):6=171650
=>C=171650+(2x4+4x6+...+98x100)
đặt A=2x4+4x6+...+98x100
=>6A=6x(2x4+4x6+...+98x100)
=>6A=2x4x6+4x6x(8-2)+...+96x98x(100-94)+98x100x(102-96)
=2x4x6+4x6x8-2x4x6+...+96x98x100-94x96x98+98x100x102-96x98x100
=98x100x102
=>A=98x100x102:6=166600
=>C=166600+171650
=>C=338250
B=2x2+4x4+6x6+...+100x100
=2x(4-2)+4x(6-2)+6x(8-2)+...+100x(102-2)
=2x4-4+4x6-8+6x8-12+...+100x102-200
=(2x4+4x6+6x8+...+100x102)-(4+8+12+...+200)
đặt A=2x4+4x6+...+98x100+100x102
=>6A=6x(2x4+4x6+...+98x100+100x102)
=>6A=2x4x6+4x6x(8-2)+...+96x98x(100-94)+98x100x(102-96)+100x102x(104-98)
=2x4x6+4x6x8-2x4x6+...+96x98x100-94x96x98+98x100x102-96x98x100+100x102x104-98x100x102
=100x102x104
=>A=100x102x104:6=176800
=>B=176800-(4+8+12+...+200)
đặt S=4+8+12+..+200
Số số hạng của S là:
(200-4):4+1=50 số
S=(200+4)x50:2=5100
=>B=176800-5100
=>B=171700
\(1+2+3+...+x=500500\)
\(\Rightarrow\frac{x.\left(x+1\right)}{2}=500500\)
\(\Rightarrow x.\left(x+1\right)=1001000\)
\(\Rightarrow1000.1001\)
..
Khi Nhân 99/ 100 với một số ta được kết quả bằng 100 .
Vậy phép nhân đó là:.......….…
Giảinhanh giúp mình với
a) \(\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-...+\dfrac{1}{9}-\dfrac{1}{10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(1-\dfrac{1}{10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\dfrac{9}{10}\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow90-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=90-89\)
\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=1\)
\(\Rightarrow x+\dfrac{103}{50}=\dfrac{5}{2}\)
\(\Rightarrow x=\dfrac{11}{25}\)
b) \(x\cdot9,85+x\cdot0,15=0,1\)
\(\Rightarrow x\cdot\left(9,85+0,15\right)=0,1\)
\(\Rightarrow x\cdot10=0,1\)
\(\Rightarrow x=\dfrac{0,1}{10}\)
\(\Rightarrow x=0,01\)
c) \(\dfrac{2}{5}+2022x=\dfrac{4}{10}\)
\(\Rightarrow\dfrac{2}{5}+2022x=\dfrac{2}{5}\)
\(\Rightarrow2022x=\dfrac{2}{5}-\dfrac{2}{5}\)
\(\Rightarrow2022x=0\)
\(\Rightarrow x=\dfrac{0}{2022}\)
\(\Rightarrow x=0\)
a) \(\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\left(1\right)\)
Ta có :
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
\(\left(1\right)\Rightarrow\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right].2=89\)
\(\Rightarrow\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right].2=90-89\)
\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)
\(\Rightarrow x+\dfrac{206}{100}=\dfrac{5}{2}:\dfrac{1}{2}\)
\(\Rightarrow x+\dfrac{103}{50}=\dfrac{5}{2}.\dfrac{2}{1}\)
\(\Rightarrow x+\dfrac{103}{50}=5\)
\(\Rightarrow x=5-\dfrac{103}{50}\)
\(\Rightarrow x=\dfrac{250}{50}-\dfrac{103}{50}\)
\(\Rightarrow x=\dfrac{147}{50}\)
x=0