K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

\(\left|x+1\right|+\left|x-2\right|=\left|x+1\right|+\left|2-x\right|\ge\left|x+1+2-x\right|=\left|3\right|=3\)

\(\Rightarrow\)\(3-\left(y-2\right)^2\ge3\)

\(\Leftrightarrow\)\(\left(y-2\right)^2\le0\)

\(\Leftrightarrow\)\(y-2=0\)

\(\Leftrightarrow\)\(y=2\)

\(PT\)\(\Leftrightarrow\)\(\left|x+1\right|+\left|x-2\right|\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x+1\right)\left(2-x\right)\ge0\)

TH1 : \(\hept{\begin{cases}x+1\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le2\end{cases}\Leftrightarrow}-1\le x\le2}\)

TH2 : \(\hept{\begin{cases}x+1\le0\\2-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge2\end{cases}}}\) ( loại ) 

Vậy \(-1\le x\le2\) và \(y=2\)

Chúc bạn học tốt ~ 

19 tháng 3 2017

Nhân phân phối là ra thôi

a)

\(VT=\left(x-1\right)\left(x+1\right)=x.x+x.1-1.x+\left(-1\right).1\)

\(=\left(x^2-1\right)+\left(x-x\right)=x^2-1+0=x^2-1=VP\Rightarrow dccm\)

c) thay vì c/m A=B ta chứng Minh B=A

\(VP=\left(x+1\right)\left(x^2-x+1\right)=\left(x^3-x^2+x\right)+\left(x^2-x+1\right)\)

\(=\left(x^3+1\right)+\left(-x^2+x^2\right)+\left(x-x\right)=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)\(=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)

1 tháng 7 2023

\(2x^2y^3+5y^2x^3+\left(-\dfrac{1}{2}x^3y^2\right)+\left(-\dfrac{1}{2}x^2y^3\right)\\ =\left[2x^2y^3+\left(-\dfrac{1}{2}x^2y^3\right)\right]+\left[5x^3y^2+\left(-\dfrac{1}{2}x^3y^2\right)\right]\\ =\dfrac{3}{2}x^2y^3+\dfrac{9}{2}x^3y^2\)

1) Ta có: \(\dfrac{1}{7}x^2y^3\cdot\left(-\dfrac{14}{3}xy^2\right)\cdot\left(-\dfrac{1}{2}xy\right)\left(x^2y^4\right)\)

\(=\left(-\dfrac{1}{7}\cdot\dfrac{14}{3}\cdot\dfrac{-1}{2}\right)\left(x^2y^3\cdot xy^2\cdot xy\cdot x^2y^4\right)\)

\(=\dfrac{1}{3}x^6y^{10}\)

2) Ta có: \(\left(3xy\right)^2\cdot\left(-\dfrac{1}{2}x^3y^2\right)\)

\(=9xy^2\cdot\dfrac{-1}{2}x^3y^2\)

\(=-\dfrac{9}{2}x^4y^4\)

3) Ta có: \(\left(-\dfrac{1}{4}x^2y\right)^2\cdot\left(\dfrac{2}{3}xy^4\right)^3\)

\(=\dfrac{1}{16}x^4y^2\cdot\dfrac{8}{27}x^3y^{12}\)

\(=\dfrac{1}{54}x^7y^{14}\)

\(C=5x^3y^2-4x^3y^2+3x^2y^3+\dfrac{1}{2}x^2y^3+\dfrac{1}{3}x^4y^5-3x^4y^5-\dfrac{1}{7}\)

    \(=x^3y^2+\dfrac{7}{2}x^2y^3-\dfrac{8}{3}x^4y^5-\dfrac{1}{7}\)

22 tháng 8 2023

gg

 

NM
26 tháng 7 2021

\(B=8x^2+2x-8x^3-8x^2+8x^3-2x+3=3\)

\(C=x^3-3x^2+3x-1+x^3+3x^2+3x+1+2x^3-8x=4x^3-2x\)

\(D=\left(x+y-5\right)^2-2\left(x+y-5\right)\left(x+3\right)+\left(x+3\right)^2=\left(x+y-5-x-3\right)^2=\left(y-8\right)^2\)

câu 2. ta có 

a.\(\left(x-y\right)^2=\left(x+y\right)^2-4xy=7^2-4\times12=1\)

b.\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)=3\left(x+y\right)^2-6xy-2\left(x+y\right)^3+6xy\left(x+y\right)=3-6xy-2+6xy=1\)

24 tháng 5 2020

giúp mình cả câu b đi ạ

22 tháng 5 2020

Bài 2: Tính giá trị của biểu thức:
a) P= 1/3 x^2 y + xy^2 - xy + 1/2 xy^2 - 5xy - 1/3 x^2 y (1)

Tại x = 0,5; y = 1

Thay \(x=0,5 ; y=1\) vào biểu thức (1) , ta có :

P= \(\dfrac{1}{3} . 0,5^2.1+0,5.1^2-0,5.1+\dfrac{1}{2}. 0,5.1^2-5.0,5.1-\dfrac{1}{3}.0,5^2.1\)

P= \(=\dfrac{1}{12}+\dfrac{1}{2} -0,5+\dfrac{1}{4} -\dfrac{5}{2} - \dfrac{1}{12}\)

P= \(= \dfrac{-9}{4}\)

Vậy \(P =\dfrac{-9}{4}\)