Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
1) `2x(3x-1)-(2x+1)(x-3)`
`=6x^2-2x-2x^2+6x-x+3`
`=4x^2+3x+3`
2) `3(x^2-3x)-(4x+2)(x-1)`
`=3x^2-9x-4x^2+4x-2x+2`
`=-x^2-7x+2`
3) `3x(x-5)-(x-2)^2-(2x+3)(2x-3)`
`=3x^2-15x-(x^2-4x+4)-(4x^2-9)`
`=3x^2-15x-x^2+4x-4-4x^2+9`
`=-2x^2-11x+5`
4) `(2x-3)^2+(2x-1)(x+4)`
`=4x^2-12x+9+2x^2+8x-x-4`
`=6x^2-5x+5`
a: Ta có: \(3x\left(2x+1\right)+\left(2x-3\right)\left(x+1\right)\)
\(=6x^2+3x+2x^2+2x-3x-3\)
\(=8x^2+2x-3\)
a: =>|x-3/2|=2
\(\Leftrightarrow x-\dfrac{3}{2}\in\left\{2;-2\right\}\)
hay \(x\in\left\{\dfrac{7}{2};-\dfrac{1}{2}\right\}\)
f: \(\Leftrightarrow\left[{}\begin{matrix}2x+3=x-2\\2x+3=2-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)
c: \(\left(2x+3\right)^2+\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\)
\(=4x^2+12x+9+4x^2-12x+9-\left(4x^2-9\right)\)
\(=8x^2+18-4x^2+9=4x^2+27\)
d: \(\left(x-1\right)\cdot\left(x^2+x+1\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\)
\(=\left(x-1\right)\left(x^2+x\cdot1+1^2\right)-\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]\)
\(=x^3-1-8x^3-27=-7x^3-28\)
e: \(\left(x+1\right)^3-\left(x-1\right)^3-6x^2\)
\(=x^3+3x^2+3x+1-6x^2-\left(x^3-3x^2+3x-1\right)\)
\(=x^3-3x^2+3x+1-x^3+3x^2-3x+1\)
=2
\(a,\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1};ĐKXĐ:x\ne\pm\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{2x-1}-\dfrac{2x-1}{2x+1}+1=0\\ \Leftrightarrow\dfrac{3\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}=0\\ \Rightarrow3\left(2x+1\right)-\left(2x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow6x+3-\left(4x^2-4x+1\right)+\left(4x^2-1\right)=0\\ \Leftrightarrow6x+3-4x^2+4x-1+4x^2-1=0\\ \Leftrightarrow10x+1=0\\ \Leftrightarrow10x=-1\\ \Leftrightarrow x=-\dfrac{1}{10}\)
Vậy \(x\in\left\{-\dfrac{1}{10}\right\}\)
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
a: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)
\(=6x^2-2x-6x^2-2x+18x+6\)
=14x+6
b: Ta có: \(\left(2x-3\right)^2-\left(2x+1\right)\left(2x-1\right)+3\left(2x-3\right)\)
\(=4x^2-12x+9-4x^2+1+6x-9\)
\(=-6x+1\)
c: Ta có: \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y-1-x-y\right)^2\)
=1
a) \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)=6x^2-2x-6x^2-2x+18x+6=14x+6\)
b) \(\left(2x-3\right)^2-\left(1+2x\right)\left(2x-1\right)+3\left(2x-3\right)=4x^2-12x+9-4x^2+1+6x-9=-6x+1\)
c) \(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)
|x+1|+|2x-1|=3-2x (1)
Với x <-1 thì (1) trở thành:
-x-1-2x+1=3-2x
-3x=3-2x
-3x+2x=3 (chuyển vế)
x=-3 (thỏa mãn vs x<-1)
Với -1<= x <= 1/2 thì (1) trở thành
x+1-2x+1=3-2x
-x+2=3-2x
-x+2x=3-2 (chuyển vế)
x=1 (ko thỏa mãn vs điều kiện)
Với x>1/2 thì (1) trở thành
x+1+2x-1=3-2x
3x=3-2x
3x+2x=3 ( chuyển vế)
5x=3
x=3/5 (thỏa mãn vs x>1/2)
vậy x= -3 hoặc x=3/5