Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x+1/2018 + x+1/2019 + x+1/2020 = 0
=> (x+1).(1/2018 + 1/2019+ 1/2020) = 0
Vì 1/2018 + 1/2019 + 1/2020 > 0
=> x+1 = 0
=> x = -1
a) (x+3)(x+5)=0
=>x+3=0 hoặc x+5=0
=>x=-3 hoặc -5
b) (x-1).5-1=0
=>5x-5-1=0
=>5x-6=0
=>5x=6
=>x=6/5
c)
Ta có: \(\dfrac{x+1}{2018}+\dfrac{x+1}{2019}+\dfrac{x+1}{2020}+\dfrac{x+1}{2021}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
a, \(\dfrac{2017.2021-4031}{2020+2017.2018}\)
= \(\dfrac{2017\left(2018+3\right)-4031}{2020+2017.2018}\)
= \(\dfrac{2017.2018+2017.3-4031}{2020+2017.2018}\)
= \(\dfrac{2017.2018+2020}{2020+2017.2018}\)
= 1
@Nguyen Thi Ngoc Linh
a)\(M=\frac{2019\times2020-2}{2018+2018\times2020}=\frac{2019\times2020-2}{2018+2018\times2020+2020-2020}=\frac{2019\times2020-2}{\left(2018+1\right)\times2020+2018-2020}=\frac{2019\times2020-2}{2019\times2020-2}=1\\ N=\frac{-2019\times20202020}{20192019\times2020}=\frac{-2019\times10001\times2020}{2019\times10001\times2020}=-1\)
b)\(5\left|x-1\right|=3M-2N=5\\ \left|x-1\right|=1\Rightarrow\hept{\begin{cases}x-1=1\Rightarrow x=2\\x-1=-1\Rightarrow x=0\end{cases}}\)
MÌNH CHỈ HUONWGS DẪN CÁCH LÀM THÔI NHÉ
P2 TÁCH SỐ
1x22 +2x32+3x42 +.....+2018x20192 + 2019x20202
= 1x2x3 - 1x2 + 2x3x4 - 2x3+ 3x4x5 - 3x4 + ... + 2018x2019x2020 - 2018x2019 +2019x2020x2021 - 2019x2020
=(1x2x3+3x4x5+....+2018x2019x2020+2019x2020x2021) - (1x2+2x3+..+2018x2019+2019x2020)
= S - P (*****)
Tính 4S => S=..... (1)
Tính 3P => P=..... (2)
TỪ (1) và (2) thay vào (*****) TA TÍNH ĐƯỢC A=.....
a ) 4 . ( x2 + 1 ) = 0
x2 + 1 = 0 : 4
x2 + 1 = 0
x2 = 0 - 1
x2 = - 1
x2 = - 12 => x = - 1
Vậy x = - 1
B=5+2(x-2019)2020
Vì (x-2019)2020 ≥0
=>5+(x-2019)2020 ≥5
Để B đạt Min
=>x-2019=0
=>x=2019
Vậy MinB=5 <=>x=2019
kết quả=0