
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a\text{)}.\:\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\\ =x^4+4x^2+4-\left(x^2-4\right)\left(x^2+4\right)\\ =x^4+4x^2+4-x^4+16\\ =4x^2+20\)
\(b\text{)}.\:\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\\ =\left(x+1+x-1\right)\left(x+1-x+1\right)-3\left(x^2-1\right)\\ =4x-3x^2+3\)

a) \(25x^2-y^2+4y-4\)
\(=\left(5x\right)^2-\left(y-2\right)^2\)
\(=\left(5x-y+2\right)\left(5x+y-2\right)\)
b) \(x+2y-xy-2\)
\(=\left(x-xy\right)+\left(2y-2\right)\)
\(=x\left(1-y\right)+2\left(y-1\right)\)
\(=x\left(1-y\right)-2\left(1-y\right)\)
\(=\left(1-y\right)\left(x-2\right)\)

Lời giải:
a) Xét hiệu:
\(a^4+b^4-(a^3b+ab^3)\)
\(=(a^4-a^3b)-(ab^3-b^4)\)
\(=a^3(a-b)-b^3(a-b)=(a-b)(a^3-b^3)=(a-b)(a-b)(a^2+ab+b^2)\)
\(=(a-b)^2(a^2+ab+b^2)\)
Ta thấy: \((a-b)^2\geq 0, \forall a,b\in\mathbb{R}\)
\(a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3b^2}{4}\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow a^4+b^4-(a^3b+ab^3)=(a-b)^2(a^2+ab+b^2)\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow a^4+b^4\geq ab^3+a^3b\) với mọi $a,b\in\mathbb{R}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b$
b)
\((x-3)(x-4)(x-5)(x-6)+3\)
\(=[(x-3)(x-6)][(x-4)(x-5)]+3\)
\(=(x^2-9x+18)(x^2-9x+20)+3\)
\(=a(a+2)+3\) (đặt \(x^2-9x+18=a)\)
\(=a^2+2a+3=(a+1)^2+2\geq 2>0, \forall a\in\mathbb{R}\)
hay \((x-3)(x-4)(x-5)(x-6)+3>0, \forall x\in\mathbb{R}\) (đpcm)
a) Xét hiệu:
a4+b4−(a3b+ab3)a4+b4−(a3b+ab3)
=(a4−a3b)−(ab3−b4)=(a4−a3b)−(ab3−b4)
=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)
=(a−b)2(a2+ab+b2)=(a−b)2(a2+ab+b2)
Ta thấy: (a−b)2≥0,∀a,b∈R(a−b)2≥0,∀a,b∈R
a2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈R
⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R
⇒a4+b4≥ab3+a3b⇒a4+b4≥ab3+a3b với mọi a,b∈Ra,b∈R
Ta có đpcm.
Dấu "=" xảy ra khi a=ba=b
b)
(x−3)(x−4)(x−5)(x−6)+3(x−3)(x−4)(x−5)(x−6)+3
=[(x−3)(x−6)][(x−4)(x−5)]+3=[(x−3)(x−6)][(x−4)(x−5)]+3
=(x2−9x+18)(x2−9x+20)+3=(x2−9x+18)(x2−9x+20)+3
=a(a+2)+3=a(a+2)+3 (đặt x2−9x+18=a)x2−9x+18=a)
=a2+2a+3=(a+1)2+2≥2>0,∀a∈R=a2+2a+3=(a+1)2+2≥2>0,∀a∈R
hay (x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R(x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R (đpcm)
a) Xét hiệu:
a4+b4−(a3b+ab3)a4+b4−(a3b+ab3)
=(a4−a3b)−(ab3−b4)=(a4−a3b)−(ab3−b4)
=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)
=(a−b)2(a2+ab+b2)=(a−b)2(a2+ab+b2)
Ta thấy: (a−b)2≥0,∀a,b∈R(a−b)2≥0,∀a,b∈R
a2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈R
⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R
⇒a4+b4≥ab3+a3b⇒a4+b4≥ab3+a3b với mọi a,b∈Ra,b∈R
Ta có đpcm.
Dấu "=" xảy ra khi a=ba=b
b)
(x−3)(x−4)(x−5)(x−6)+3(x−3)(x−4)(x−5)(x−6)+3
=[(x−3)(x−6)][(x−4)(x−5)]+3=[(x−3)(x−6)][(x−4)(x−5)]+3
=(x2−9x+18)(x2−9x+20)+3=(x2−9x+18)(x2−9x+20)+3
=a(a+2)+3=a(a+2)+3 (đặt x2−9x+18=a)x2−9x+18=a)
=a2+2a+3=(a+1)2+2≥2>0,∀a∈R=a2+2a+3=(a+1)2+2≥2>0,∀a∈R
hay (x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R(x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R (đpcm)v


x2 - 4 + (x - 2)2 = (x - 2)(x + 2) + (x - 2)2 = (x - 2)(x + 2 + x - 2) = 2x(x - 2)

a) bạn nhóm 2 cái cuối thành 1 nhóm, 2 cái ở giữa thành 1 nhóm, rồi đặt ẩn phụ là ra
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\) ta có:
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow\)\(t^2+2t-24=0\)
\(\Leftrightarrow\)\(\left(t-4\right)\left(t+6\right)=0\)
đến đây bn thay trở lại rồi tìm nghiệm nhé

đặt x2 + x là a ta sẽ có a2 + 4a -12=0
=a2 + 6a - 2a -12=0
=a(a+6) -2(a+6)=0
(a-2)(a+6)=0
vậy a=2 và a=-6
(x2 + x)2 + 4(x2 + x) - 12 = 0
<=> x^4 + 2x^3 + x^2 + 4x^2 + 4x - 12 = 0
<=> x^4 + 2x^3 + 5x^2 + 4x - 12 = 0
<=> x^4 - x^3 + 3x^3 - 3x^2 + 8x^2 - 8x + 12x - 12 = 0
<=> x^3(x - 1) + 3x^2(x - 1) + 8x(x - 1) + 12(x - 1) = 0
<=> (x^3 + 3x^2 + 8x + 12)(x - 1) = 0
<=> (x^3 + 2x^2 + x^2 + 2x + 6x + 12)(x - 1) = 0
<=> [x^2(x + 2) + x(x + 2) + 6(x + 2)](x - 1) = 0
<=> (x^2 + x + 6)(x + 2)(x - 1) = 0
x^2 + x + 6 > 0
<=> x + 2 = 0 hoặc x - 1 = 0
<=> x = -2 hoặc x = 1
mik bít
nhưng kkkkkkkkkkkkkkk
mik đi
\(x^{12}-x^4=\left(x^6\right)^2-\left(x^2\right)^2=\left(x^6-x^2\right)\left(x^6+x^2\right)\)